催化学报 ›› 2023, Vol. 52: 50-78.DOI: 10.1016/S1872-2067(23)64504-8
洪岩,1, 王琦,1, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松*(), 李斌*(
)
收稿日期:
2023-05-24
接受日期:
2023-08-07
出版日期:
2023-09-18
发布日期:
2023-09-25
通讯作者:
*电子信箱: carlosliusong@nefu.edu.cn (刘松),libinzh62@163.com (李斌).
作者简介:
1共同第一作者
基金资助:
Yan Hong,1, Qi Wang,1, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu*(), Bin Li*(
)
Received:
2023-05-24
Accepted:
2023-08-07
Online:
2023-09-18
Published:
2023-09-25
Contact:
*E-mail: About author:
Song Liu is a professor at Northeast Forestry University. He received his B.S. degree (2014) from Jilin University and his PhD degree (2020) in catalysis from Dalian Institute of Chemical Physics, Chinese Academy of Sciences. His research interests include design and preparation of efficient biomass-based electrocatalytic materials, mechanism analysis of electrocatalytic reaction and electrocatalytic biomass conversion.Supported by:
摘要:
氨是重要的化工产品之一, 广泛应用于化肥和燃料生产等领域. 目前我国仍采用传统的Haber-Bosch工艺合成氨, 该工艺消耗大量的化石燃料并造成环境污染. 因此, 开发一种高效、环保的氨合成方法代替Haber-Bosch工艺, 减少能源消耗和保护环境具有非常重要的意义. 电化学氮还原(eNRR)工艺由于使用可再生能源, 成为有前景的替代方法之一. 但目前eNRR工艺面临着许多挑战: 较大的过电位以及析氢反应都会导致氨合成反应性能不理想. 因此, 理性设计电催化剂以提高氨合成效率成为当务之急. 本文总结了近年eNRR领域的最新进展, 以期为开发高性能催化剂提供借鉴.
本文从eNRR的反应机理入手, 介绍了eNRR的检测方法和反应条件, 总结了近年来电催化剂的设计策略、原位表征方法和理论计算的研究成果, 并对领域未来发展进行展望. 首先, 从理论热力学和NH3检测等方面讨论了eNRR的关键难点. 然后, 从形态、结构、空位、掺杂、协同效应、异质结构和单原子等多方面总结了eNRR催化剂的设计策略. 此外, 介绍了原位拉曼、原位红外、原位电化学质谱和原位X射线吸收光谱等技术在电催化氮还原机理研究中的重要作用. 讨论了密度泛函理论(DFT)对于研究eNRR过程中的反应能垒和催化剂电子轨道分布的重要作用. 最后, 介绍了当前eNRR所面临的挑战, 并就如何提高NH3产率和选择性提出了建议, 如采用流动电解槽中固-液-气三相界面设计可确保N2与催化剂之间有更大的接触面积和更长的接触时间, 从而提高N2转化率; 改变电解液成分或催化反应条件等方式以延长催化剂的使用寿命; 通过原位表征手段对催化反应过程进行实时监测, 以进一步揭示催化机理等.
综上, eNRR领域取得的进展说明了在水溶液中通过可再生的电力将N2还原成NH3具有可行性. 尽管现阶段存在eNRR效率不高、工艺不成熟等问题, 但随着理论研究与实验结果的更好结合, 原位表征技术的进一步发展和应用, 未来在高效、稳定的氨合成电催化剂设计方面将会取得更大的进展, 进而实现绿色合成氨的工业化应用, 为减少能源消耗和碳排放做出贡献.
洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52: 50-78.
Yan Hong, Qi Wang, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu, Bin Li. Recent progress in advanced catalysts for electrochemical nitrogen reduction reaction to ammonia[J]. Chinese Journal of Catalysis, 2023, 52: 50-78.
Fig. 2. (a) Overview diagram of nitrogen fixing enzyme. (b) A graphic representation of the nitrogen-fixing enzyme's structure. (c) Schematics of dinitrogen molecular orbitals hybridized by nitrogen atomic orbitals and the electron arrangement of element.
Fig. 3. (a) Schematic diagram of NH4+ quantitative analysis. Spectrophotometric method (b) and ion selective electrode (c) and ion chromatography (d) for the detection of NH4+ in NRR. (e) Comparison of the three methods for NH3 quantification. Reprinted with permission from Ref. [55]. Copyright 2019, John Wiley and Sons. (f,g) Standard curves of different concentrations of 15NH3 by 1H NMR spectra. Reprinted with permission from Ref. [58]. Copyright 2021, John Wiley and Sons.
Fig. 4. (a) LIR comparison between several cathode materials. Reprinted with permission from Ref. [58]. Copyright 2021, John Wiley and Sons. (b) Schematic representation of the chemical properties of proton carriers in lithium-mediated electrocatalytic synthesis of ammonia gas. (c,d) Comparison of TiO2 nano-array electrodes obtained with/without 20 wt% PEG in acidic and alkaline electrolytes. (c,d) Reprinted with permission from Ref. [59]. Copyright 2021, John Wiley and Sons. (e) CV curves of PEBCD/C electrodes in Li2SO4 electrolyte. (f) FTIR spectra of PEBCD before and after Li+ incorporation. Reprinted with permission from Ref. [63]. Copyright 2017, American Chemical Society. (g) N2 adsorption energy on Sb (100). (h) Sb-N and A-N interatomic dimensions for N2 adsorbates, in addition to the appropriately optimized structures. Reprinted with permission from Ref. [61]. Copyright 2022, American Chemical Society.
Fig. 6. (a) Geometric model of Au THH NR and exposed 24 facets. Reprinted with permission from Ref. [68]. Copyright 2016, John Wiley and Sons. (b) Schematic diagrams of face-centered cubic PdCu and body-centered cubic PdCu structures. Reprinted with permission from Ref. [69]. Copyright 2020, John Wiley and Sons. (c) TEM image of NPG@ZIF-8 composite. (d) SEM image of Mo/VO2. (e) TEM images of Rh-Se NCs. (f) FE of VO2 and Mo/VO2 at various potentials. (g) Comparative electrochemical properties of different materials. (h) NH3 yields at various applied potentials of Rh-Se NCs/C. (c,g) Reprinted with permission from Ref. [74]. Copyright 2019, Copyright 2020, John Wiley and Sons. (d,f) Reprinted with permission from Ref. [47]. Copyright 2023, Copyright 2020, John Wiley and Sons. (e,h) Reprinted with permission from Ref. [23]. Copyright 2020, John Wiley and Sons.
Fig. 7. (a) Diagram of the interaction between metal and carrier. (b) Charge transfer schematic. (c) Au 4f spectra of Au/CoOx samples after 10 h of electrolysis at -0.5 V vs. RHE. Reprinted with permission from Ref. [76]. Copyright 2019, John Wiley and Sons. (d) Interfacial perimeter schematic. (e) Chemical composition diagram. (f) Schematic diagram of strong metal-carrier interaction (SMSI). (g) Diagrams of the Mo-PTA@CNT schematic. Reprinted with permission from Ref. [79]. Copyright 2021, John Wiley and Sons. (h) N2 molecule adsorption energies on TiO2(B) and Li-TiO2(B) surfaces, respectively. Reprinted with permission from Ref. [81]. Copyright 2022, Elsevier. (i) Average NH3 yields of Au/Fe2(MoO4)3, Fe2(MoO4)3 and Au/C catalysts at different potentials. Reprinted with permission from Ref. [82]. Copyright 2021, John Wiley and Sons.
Fig. 8. (a) Schematic diagram of bimetallic synergy. (b) Schematic diagram of Au6/Ni electrocatalytic reduction of N2 to NH3. (c) Au6/Ni catalyst NH3 production at various potentials. (b,c) Reprinted with permission from Ref. [30]. American Chemical Society. (d) Flow chart for the preparation of core-shell manganese oxide. Reprinted with permission from Ref. [90]. Copyright 2022, American Chemical Society. (e) Schematic diagram of np-Pd3Bi. (f) The mass-normalized NH3 yield rates of commercial Pd/C, np-Pd3Bi, and np-PdBi2 at the applied voltage. (e,f) Reprinted with permission from Ref. [87]. Copyright 2021, John Wiley and Sons.
Fig. 9. (a) Diagram of single atom and particle synergy. (b) Faraday efficiency of Au-Cys-Mo catalysts at different potentials. Reprinted with permission from Ref. [94]. Copyright 2021, John Wiley and Sons. (c) HAADF-STEM images of MoSAs-Mo2C/NCNTs. (d) An illustration showing the morphology of CNT@C3N4-Fe&Cu. (e) Comparison of different materials' Faraday efficiencies at four applied potentials. (f) NH3 yield rate and FE of various samples. (c,f) Reprinted with permission from Ref. [96]. Copyright 2020, John Wiley and Sons. (d,e) Reprinted with permission from Ref. [95]. Copyright 2020, John Wiley and Sons.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal- support interaction | Au/TiO2 | 0.01 mol L-1 HCl | 64.6 μg h-1 mg-1 | 29.5 | -0.4 | [ |
Au NPs/TiO2 | HCl (pH=1) | 21.4 μg h-1 mg-1 | 8.11 | -0.2 | [ | |
Au/CoOx | 0.05 mol L-1 H2SO4 | 15.1 μg cm-2 h-1 | 19 | -0.5 | [ | |
MoS2/Mo2C | 0.05 mol L-1 H2SO4 | 1.41 μg cm-2 h-1 | 42 | -0.1 | [ | |
FeNi2S4/NiS | 0.1 mol L-1 KOH | 128.39 ± 1.32 µg h-1cm-2 | 28.6 ± 0.18 | -0.3 | [ | |
Mo-PTA@CNT | 0.1 mol L-1 K2SO4 | 51 ± 1 μg h-1 mg-1 | 83 ± 1 | -0.1 | [ | |
Au3Cu@Cu | 0.1 mol L-1 Na2SO4 | 33.97 μg h-1 mg-1 | 21.41 | -0.2 | [ | |
Li-TiO2(B) | 0.5 mol L-1 LiClO4 | 8.7 μg h-1 mg-1 | 18.2 | -0.4 | [ | |
Au/Fe2(MoO4)3 | 0.2 mol L-1 Na2SO4 | 7.61 μg h-1 mg-1 | 18.79 | -0.4 | [ | |
Fe/MoS2 | 0.1 mol L-1 Na2SO4 | 12.5 µg h-1 cm-2 | 1.7 | -0.1 | [ | |
Metal- metal interaction | Au6/Ni | 0.05 mol L-1 H2SO4 | 7.4 μg h-1 mg-1 | 67.8 | -0.14 | [ |
RuPt | 1.0 mol L-1 KOH | 6.37 × 10−10 mol s-1 cm-2 | 1.1 | -0.077 | [ | |
CuAu@2LCS | 0.1 mol L-1 HCl | 33.9 μg h-1 mg-1 | 24.1 | -0.2 | [ | |
np-Pd3Bi | 0.05 mol L-1 H2SO4 | 59.05 ± 2.27 μg h-1 mg-1 | 21.52 ± 0.71 | -0.2 | [ | |
Fe3Mo3C | 1 mol L-1 KOH | 13.10 µg h-1 cm-2 | 14.74 | -0.5 | [ | |
FeNi@CNS | 0.1 mol L-1 Na2SO4 | 16.52 µg h-1 cm-2 | 9.83 | -0.2 | [ | |
Particle-monoatom interaction | Fe-SnO2 | 0.1 mol L-1 HCl | 82.7 μg h-1 mg-1 | 20.4 | -0.3 | [ |
Au25-Cys-Mo | 0.1 mol L-1 HCl | 34.5 μg h-1 mg-1 | 26.5 | -0.5 | [ | |
CNT@C3N4-Fe&Cu | 0.25 mol L-1 LiClO4 | 9.86 μg h-1 mg-1 | 34 | -0.8 | [ | |
MoSAs-Mo2C/NCNTs | 0.005 mol L-1 H2SO4 + 0.1 mol L-1 K2SO4 | 16.1 µg h-1 cm-2 | 7.1 | -0.2 | [ |
Table 1 Recent publications on the application of synergy to electrocatalytic N2 reduction of NH3.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal- support interaction | Au/TiO2 | 0.01 mol L-1 HCl | 64.6 μg h-1 mg-1 | 29.5 | -0.4 | [ |
Au NPs/TiO2 | HCl (pH=1) | 21.4 μg h-1 mg-1 | 8.11 | -0.2 | [ | |
Au/CoOx | 0.05 mol L-1 H2SO4 | 15.1 μg cm-2 h-1 | 19 | -0.5 | [ | |
MoS2/Mo2C | 0.05 mol L-1 H2SO4 | 1.41 μg cm-2 h-1 | 42 | -0.1 | [ | |
FeNi2S4/NiS | 0.1 mol L-1 KOH | 128.39 ± 1.32 µg h-1cm-2 | 28.6 ± 0.18 | -0.3 | [ | |
Mo-PTA@CNT | 0.1 mol L-1 K2SO4 | 51 ± 1 μg h-1 mg-1 | 83 ± 1 | -0.1 | [ | |
Au3Cu@Cu | 0.1 mol L-1 Na2SO4 | 33.97 μg h-1 mg-1 | 21.41 | -0.2 | [ | |
Li-TiO2(B) | 0.5 mol L-1 LiClO4 | 8.7 μg h-1 mg-1 | 18.2 | -0.4 | [ | |
Au/Fe2(MoO4)3 | 0.2 mol L-1 Na2SO4 | 7.61 μg h-1 mg-1 | 18.79 | -0.4 | [ | |
Fe/MoS2 | 0.1 mol L-1 Na2SO4 | 12.5 µg h-1 cm-2 | 1.7 | -0.1 | [ | |
Metal- metal interaction | Au6/Ni | 0.05 mol L-1 H2SO4 | 7.4 μg h-1 mg-1 | 67.8 | -0.14 | [ |
RuPt | 1.0 mol L-1 KOH | 6.37 × 10−10 mol s-1 cm-2 | 1.1 | -0.077 | [ | |
CuAu@2LCS | 0.1 mol L-1 HCl | 33.9 μg h-1 mg-1 | 24.1 | -0.2 | [ | |
np-Pd3Bi | 0.05 mol L-1 H2SO4 | 59.05 ± 2.27 μg h-1 mg-1 | 21.52 ± 0.71 | -0.2 | [ | |
Fe3Mo3C | 1 mol L-1 KOH | 13.10 µg h-1 cm-2 | 14.74 | -0.5 | [ | |
FeNi@CNS | 0.1 mol L-1 Na2SO4 | 16.52 µg h-1 cm-2 | 9.83 | -0.2 | [ | |
Particle-monoatom interaction | Fe-SnO2 | 0.1 mol L-1 HCl | 82.7 μg h-1 mg-1 | 20.4 | -0.3 | [ |
Au25-Cys-Mo | 0.1 mol L-1 HCl | 34.5 μg h-1 mg-1 | 26.5 | -0.5 | [ | |
CNT@C3N4-Fe&Cu | 0.25 mol L-1 LiClO4 | 9.86 μg h-1 mg-1 | 34 | -0.8 | [ | |
MoSAs-Mo2C/NCNTs | 0.005 mol L-1 H2SO4 + 0.1 mol L-1 K2SO4 | 16.1 µg h-1 cm-2 | 7.1 | -0.2 | [ |
Fig. 10. (a) Schematic diagram of the doping of metallic and non-metallic atoms in nanomaterials. (b) NH3 yields of different materials such as W18O49 at different potentials. (c) Schematic diagram of Fe doped W18O49 nanowires @CFP. (b,c) Reprinted with permission from Ref. [97]. Copyright 2020, John Wiley and Sons. (d) NPC schematic. Reprinted with permission from Ref. [114]. Copyright 2018, American Chemical Society. (e) NRR for BG is shown graphically. (f) The NH3 production rates of BG-1, BOG, BG-2, and G at different potentials. Reprinted with permission from Ref. [112]. Copyright 2018, Elsevier. (g) Diagram of P-C3N4. Reprinted with permission from Ref. [118]. Copyright 2023, John Wiley and Sons. (h) Diagrammatic representation of the MoS2-7H-catalyzed reduction of N2 to NH3. Reprinted with permission from Ref. [124]. Copyright 2022, Elsevier.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal-doping | Fe-W18O49 | 0.25 mol L-1 LiClO4 | 24.7 μg h-1 mgcat-1 | 20 | -0.15 | [ |
Fe-Ni2P | 0.1 mol L-1 HCl | 88.51 μg h-1 mgcat-1 | 7.92 | -0.3 | [ | |
0.50Fe-Bi2WO6 | 0.05 mol L-1 H2SO4 | 289 μg h-1 mgcat-1 | 2 | -0.75 | [ | |
a-FeB2 PNSs | 0.5 mol L-1 LiClO4 | 39.8 μg h-1 mgcat-1 | 16.7 | -0.3 | [ | |
B-doping | Boron nanosheets | 0.1 mol L-1 HCl | 3.12 μg h-1 mgcat-1 | 4.84 | -0.14 | [ |
BNNRs | 0.1 mol L-1 HCl | 26.57 μg h-1 mgcat-1 | 15.95 | -0.75 | [ | |
BCN | 0.05 mol L-1 Na2SO4 | 8.39 μg h-1 mgcat-1 | 9.87 | -0.3 | [ | |
Eex-COF/NC | 0.1 mol L-1 KOH | 12.53 μg h-1 mgcat-1 | 45.34 | -0.2 | [ | |
BG | 0.05 mol L-1 H2SO4 | 9.8 μg h-1 cm-2 | 10.8 | -0.5 | [ | |
N-doping | NPC-750 | 0.05 mol L-1 H2SO4 | 1.4 mmol g-1 h-1 | 1.42 | -0.9 | [ |
C-ZIF-1100 | 0.1 mol L-1 KOH | 3.4 × 10-6 mol cm-2 h-1 | 10.2 | -0.3 | [ | |
CNS | 0.25 mol L-1 LiClO4 | 97.18 ± 7.13 µg h-1 cm-2 | 11.56 ± 0.85 | -1.19 | [ | |
P-doping | P-NV-C3N4 | 0.1 mol L-1 Na2SO4 | 28.67 µg h-1 mgcat-1 | 22.15 | -0.3 | [ |
FL-BP NSs | 0.01 mol L-1 HCl | 31.37 µg h-1 mgcat-1 | 5.07 | -0.7 | [ | |
Crp NRs/NF | 0.1 mol L-1 Na2SO4 | 15.4 µg h-1 mgcat-1 | 9.4 | -0.2 | [ | |
S-doping | SDG | 0.5 mol L-1 LiClO4 | 28.56 µg h-1 mgcat-1 | 7.07 | -0.85 | [ |
S-NV-C3N4 | 0.5 mol L-1 LiClO4 | 32.7 µg h-1 mgcat-1 | 14.1 | -0.4 | [ | |
S-CNS | 0.1 mol L-1 Na2SO4 | 19.07 µg h-1 mgcat-1 | 7.47 | -0.7 | [ | |
S-MoS2 | 0.5 mol L-1 H2SO4 | 43.4 ± 3 μg h-1 mgcat-1 | 16.8 ± 2 | -0.3 | [ | |
MoS2-Vs | 0.5 mol L-1 LiClO4 | 66.74 μg h-1 mgcat-1 | 14.68 | -0.6 | [ | |
Mo-SnS2/CC | 0.5 mol L-1 LiClO4 | 41.3 μg h-1 mgcat-1 | 20.8 | -0.4 | [ |
Table 2 Recently published papers on doping engineering for eNRR.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal-doping | Fe-W18O49 | 0.25 mol L-1 LiClO4 | 24.7 μg h-1 mgcat-1 | 20 | -0.15 | [ |
Fe-Ni2P | 0.1 mol L-1 HCl | 88.51 μg h-1 mgcat-1 | 7.92 | -0.3 | [ | |
0.50Fe-Bi2WO6 | 0.05 mol L-1 H2SO4 | 289 μg h-1 mgcat-1 | 2 | -0.75 | [ | |
a-FeB2 PNSs | 0.5 mol L-1 LiClO4 | 39.8 μg h-1 mgcat-1 | 16.7 | -0.3 | [ | |
B-doping | Boron nanosheets | 0.1 mol L-1 HCl | 3.12 μg h-1 mgcat-1 | 4.84 | -0.14 | [ |
BNNRs | 0.1 mol L-1 HCl | 26.57 μg h-1 mgcat-1 | 15.95 | -0.75 | [ | |
BCN | 0.05 mol L-1 Na2SO4 | 8.39 μg h-1 mgcat-1 | 9.87 | -0.3 | [ | |
Eex-COF/NC | 0.1 mol L-1 KOH | 12.53 μg h-1 mgcat-1 | 45.34 | -0.2 | [ | |
BG | 0.05 mol L-1 H2SO4 | 9.8 μg h-1 cm-2 | 10.8 | -0.5 | [ | |
N-doping | NPC-750 | 0.05 mol L-1 H2SO4 | 1.4 mmol g-1 h-1 | 1.42 | -0.9 | [ |
C-ZIF-1100 | 0.1 mol L-1 KOH | 3.4 × 10-6 mol cm-2 h-1 | 10.2 | -0.3 | [ | |
CNS | 0.25 mol L-1 LiClO4 | 97.18 ± 7.13 µg h-1 cm-2 | 11.56 ± 0.85 | -1.19 | [ | |
P-doping | P-NV-C3N4 | 0.1 mol L-1 Na2SO4 | 28.67 µg h-1 mgcat-1 | 22.15 | -0.3 | [ |
FL-BP NSs | 0.01 mol L-1 HCl | 31.37 µg h-1 mgcat-1 | 5.07 | -0.7 | [ | |
Crp NRs/NF | 0.1 mol L-1 Na2SO4 | 15.4 µg h-1 mgcat-1 | 9.4 | -0.2 | [ | |
S-doping | SDG | 0.5 mol L-1 LiClO4 | 28.56 µg h-1 mgcat-1 | 7.07 | -0.85 | [ |
S-NV-C3N4 | 0.5 mol L-1 LiClO4 | 32.7 µg h-1 mgcat-1 | 14.1 | -0.4 | [ | |
S-CNS | 0.1 mol L-1 Na2SO4 | 19.07 µg h-1 mgcat-1 | 7.47 | -0.7 | [ | |
S-MoS2 | 0.5 mol L-1 H2SO4 | 43.4 ± 3 μg h-1 mgcat-1 | 16.8 ± 2 | -0.3 | [ | |
MoS2-Vs | 0.5 mol L-1 LiClO4 | 66.74 μg h-1 mgcat-1 | 14.68 | -0.6 | [ | |
Mo-SnS2/CC | 0.5 mol L-1 LiClO4 | 41.3 μg h-1 mgcat-1 | 20.8 | -0.4 | [ |
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal vacancies | etched-PdZn/NHCP | 0.1 mol L-1 PBS | 5.28 µg h-1 mgcat-1 | 16.9 | -0.2 | [ |
MV-MoN@NC | 0.1 mol L-1 HCl | 76.9 µg h-1 mgcat-1 | 6.9 | -0.2 | [ | |
Ni-NFV | 0.1 mol L-1 PBS | 7.3 µg h-1 mgcat-1 | 4.4 | -0.4 | [ | |
Oxygen vacancies | α-Fe2O3 | 0.1 mol L-1 KOH | 0.46 µg h-1 cm-2 | 6.04 | -0.9 | [ |
TiO2/CeO2 | 0.1 mol L-1 HCl | 8.8 µg h-1 mgcat-1 | 6.8 | -0.25 | [ | |
Cu NPs/TiO2 | 0.1 mol L-1 Na2SO4 | 13.6 µg h-1 mgcat-1 | 17.9 | -0.4 | [ | |
MoO3-x/MXene | 0.1 mol L-1 KOH | 95.8 µg h-1 mgcat-1 | 22.3 | -0.4 | [ | |
TiO2-V(o) | 0.1 mol L-1 HCl | 3.0 µg h-1 mgcat-1 | 6.5 | -0.12 | [ | |
WO3-x(Vo)_H2 | 0.5 mol L-1 H2SO4 | 4.2 µg h-1 mgcat-1 | 6.8 | -0.12 | [ | |
MvK theoretical vacancies | VN | 1 mmol L-1 H2SO4 | 3.3 × 10-10 mol s-1 cm-2 | 6.0 | -0.1 | [ |
Mo2N | 0.1 mol L-1 HCl | 78.4 µg h-1 mgcat-1 | 4.5 | -0.3 | [ |
Table 3 A recently published paper on vacancy engineering for eNRR.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
Metal vacancies | etched-PdZn/NHCP | 0.1 mol L-1 PBS | 5.28 µg h-1 mgcat-1 | 16.9 | -0.2 | [ |
MV-MoN@NC | 0.1 mol L-1 HCl | 76.9 µg h-1 mgcat-1 | 6.9 | -0.2 | [ | |
Ni-NFV | 0.1 mol L-1 PBS | 7.3 µg h-1 mgcat-1 | 4.4 | -0.4 | [ | |
Oxygen vacancies | α-Fe2O3 | 0.1 mol L-1 KOH | 0.46 µg h-1 cm-2 | 6.04 | -0.9 | [ |
TiO2/CeO2 | 0.1 mol L-1 HCl | 8.8 µg h-1 mgcat-1 | 6.8 | -0.25 | [ | |
Cu NPs/TiO2 | 0.1 mol L-1 Na2SO4 | 13.6 µg h-1 mgcat-1 | 17.9 | -0.4 | [ | |
MoO3-x/MXene | 0.1 mol L-1 KOH | 95.8 µg h-1 mgcat-1 | 22.3 | -0.4 | [ | |
TiO2-V(o) | 0.1 mol L-1 HCl | 3.0 µg h-1 mgcat-1 | 6.5 | -0.12 | [ | |
WO3-x(Vo)_H2 | 0.5 mol L-1 H2SO4 | 4.2 µg h-1 mgcat-1 | 6.8 | -0.12 | [ | |
MvK theoretical vacancies | VN | 1 mmol L-1 H2SO4 | 3.3 × 10-10 mol s-1 cm-2 | 6.0 | -0.1 | [ |
Mo2N | 0.1 mol L-1 HCl | 78.4 µg h-1 mgcat-1 | 4.5 | -0.3 | [ |
Fig. 11. (a) Schematic diagram of metallic and non-metallic vacancies. (b) Schematic diagram of a layered porous MoN@NC with a large number of Mo vacancies. (c) NH3 yields with different catalysts at -0.2 V vs. RHE. (b,c) Reprinted with permission from Ref. [127]. Copyright 2020, Elsevier. (d) Ni-B and Ni-V system free energy maps have been established. (e) Synthesis process of catalytic nickel nanoflowers. Reprinted with permission from Ref. [128]. Copyright 2022, American Chemical Society. (f) Schematic illustration of the molecular structure of TiO2/CeO2 and the proposed mechanism for electrochemical NRR. (g) Catalysts' Faraday efficiency and NH3 yield at particular voltages. Reprinted with permission from Ref. [132]. Copyright 2023, John Wiley and Sons.
Fig. 12. (a) General schematic of heterogeneous structured catalyst for eNRR. (b) Calculated work function of BNQDs and Ti3C2Tx and differential charge density of BNQDs/Ti3C2Tx. Reprinted with permission from Ref. [140]. Copyright 2022, John Wiley and Sons. (c) Synthesis process of Cu3(HITP)2@h-BN heterojunction. Reprinted with permission from Ref. [141]. Copyright 2023, John Wiley and Sons. (d) HAADF-STEM image of CoxNi3-x(HITP)2/BNSs-P (inset: lattice line scan). Reprinted with permission from Ref. [142]. Copyright 2023, John Wiley and Sons. (e) Electrochemical properties of NiCoP/CoMoP/Co(Mo3Se4)4@C/NF. Reprinted with permission from Ref. [144]. Elsevier.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
SACs on carbon supports | Au Sac/N-Cs | 0.1 mol L-1 HCl | 2.32 μg h-1 cm-2 | 12.3 | -0.2 | [ |
Fe-N3/CNT | 0.1 mol L-1 KOH | 34.83 μg h-1 mgcat-1 | 9.28 | -0.2 | [ | |
Fe-(O-C2)4 | 0.1 mol L-1 KOH | 32.1 μg h-1 mgcat-1 | 29.3 | -0.1 | [ | |
Mo-SAs/AC | 0.1 mol L-1 Na2SO4 | 2.55 ± 0.31 mg h-1 mgcat-1 | 57.54 ± 6.98 | -0.4 | [ | |
Fe-N2O4 | 0.1 mol L-1 HCl | 31.9 μg h-1 mgcat-1 | 11.8 | -0.4 | [ | |
SACs on non-carbon supports | AuSA/np-MoSe2 | 0.1 mol L-1 Na2SO4 | 30.83 μg h-1 mgcat-1 | 37.82 | -0.3 | [ |
NbSA-TiO2 | 0.1 mol L-1 Na2SO4 | 21.17 μg h-1 mgcat-1 | 9.17 | -0.5 | [ | |
Ru1.4Co3O4-x | 0.1 mol L-1 KOH | 2.67 mg h-1 mgcat-1 | 40.2 | 0 | [ | |
Cd/In2O3 | 0.1 mol L-1 KOH | 57.5 μg h-1 mgcat-1 | 9.6 ± 0.9 | -0.43 | [ | |
Y@TiO2 | 0.1 mol L-1 HCl | 6.3 μg h-1 mgcat-1 | 11.0 | -0.22 | [ | |
Bi-TiN | 0.1 mol L-1 Na2SO4 | 76.15 μg h-1 mgcat-1 | 24.60 | -0.8 | [ | |
Solid-loaded molecular catalysts | FePc-py-CNT | 0.1 mol L-1 HCl | 21.7 μg h-1 mgcat-1 | 22.2 | -0.5 | [ |
CoPc NTs | 0.1 mol L-1 HCl | 107.9 μg h-1 mgcat-1 | 27.7 | -0.3 | [ | |
FeTPPCl | 0.1 mol L-1 Na2SO4-PBS | 18.28 ± 1.6 μg h-1 mgcat-1 | 16.76 ± 0.9 | -0.3 | [ |
Table 4 Recent papers on the application of single-atom catalysts to eNRR.
Type | Catalyst | Electrolyte | NH3 yield | FE (%) | Potential (V vs. RHE) | Ref. |
---|---|---|---|---|---|---|
SACs on carbon supports | Au Sac/N-Cs | 0.1 mol L-1 HCl | 2.32 μg h-1 cm-2 | 12.3 | -0.2 | [ |
Fe-N3/CNT | 0.1 mol L-1 KOH | 34.83 μg h-1 mgcat-1 | 9.28 | -0.2 | [ | |
Fe-(O-C2)4 | 0.1 mol L-1 KOH | 32.1 μg h-1 mgcat-1 | 29.3 | -0.1 | [ | |
Mo-SAs/AC | 0.1 mol L-1 Na2SO4 | 2.55 ± 0.31 mg h-1 mgcat-1 | 57.54 ± 6.98 | -0.4 | [ | |
Fe-N2O4 | 0.1 mol L-1 HCl | 31.9 μg h-1 mgcat-1 | 11.8 | -0.4 | [ | |
SACs on non-carbon supports | AuSA/np-MoSe2 | 0.1 mol L-1 Na2SO4 | 30.83 μg h-1 mgcat-1 | 37.82 | -0.3 | [ |
NbSA-TiO2 | 0.1 mol L-1 Na2SO4 | 21.17 μg h-1 mgcat-1 | 9.17 | -0.5 | [ | |
Ru1.4Co3O4-x | 0.1 mol L-1 KOH | 2.67 mg h-1 mgcat-1 | 40.2 | 0 | [ | |
Cd/In2O3 | 0.1 mol L-1 KOH | 57.5 μg h-1 mgcat-1 | 9.6 ± 0.9 | -0.43 | [ | |
Y@TiO2 | 0.1 mol L-1 HCl | 6.3 μg h-1 mgcat-1 | 11.0 | -0.22 | [ | |
Bi-TiN | 0.1 mol L-1 Na2SO4 | 76.15 μg h-1 mgcat-1 | 24.60 | -0.8 | [ | |
Solid-loaded molecular catalysts | FePc-py-CNT | 0.1 mol L-1 HCl | 21.7 μg h-1 mgcat-1 | 22.2 | -0.5 | [ |
CoPc NTs | 0.1 mol L-1 HCl | 107.9 μg h-1 mgcat-1 | 27.7 | -0.3 | [ | |
FeTPPCl | 0.1 mol L-1 Na2SO4-PBS | 18.28 ± 1.6 μg h-1 mgcat-1 | 16.76 ± 0.9 | -0.3 | [ |
Fig. 13. (a) Schematic diagram of single atom loading on carbon and non-carbon substrates. (b) Fe-N/C-CNT synthesis is depicted in a schematic. (c) NH3 yield of CNTs, NC-CNTs, and Fe-N/C-CNTs. (b,c) Reprinted with permission from Ref. [159]. Copyright 2019, American Chemical Society. (d) The NC/Bi SAs/TiN/CC the production process can be seen schematically. Reprinted with permission from Ref. [177]. Copyright 2021, John Wiley and Sons. (e) Schematic diagram of Ru-Co3O4-x nanowires. (f) Diagram of AuSA/np-MoSe2. (g) Mass-normalized NH3 yields of the three catalytic materials at each given potential. (h) Partial current density and NH3 yield of Ru1.4Co3O4-x at different potentials. (e,h) Reprinted with permission from Ref. [174]. Copyright 2021, American Chemical Society. (f,g) Reprinted with permission from Ref. [171]. Copyright 2021, John Wiley and Sons.
Fig. 14. (a) Schematic diagram of the original flavor representation means. (b) Raman spectra of MoO3/MoO3-x with time during -0.4 V NRR electrolysis. Reprinted with permission from Ref. [133]. Copyright 2021, John Wiley and Sons. (c) Normalized in-situ Bi L-edge XAS spectra with the electrolyte changed from Ar-saturated to N2-saturated aqueous solutions. Reprinted with permission from Ref. [183]. Copyright 2023, John Wiley and Sons. (d) In-situ FTIR spectra of Ag4Ni2 NCs at -0.2 V. Reprinted with permission from Ref. [49]. Copyright 2022, John Wiley and Sons. (e) Ion current responses to the m/z signal at position 17 under diverse reaction potentials and situations. Reprinted with permission from Ref. [190]. Copyright 2020, John Wiley and Sons.
Fig. 15. (a) Combination volcano diagrams (lines) for the stepped (red) and flat (black) transition metal surfaces for nitrogen reduction with a Heyrovsky-type reaction, without (dotted lines) and with (solid lines) the impact of H-bonds. (b) On a surface doped with B, (111), DFT computed the NRR reaction cycle using an alternate pathway. Reprinted with permission from Ref. [199]. Copyright 2020, American Chemical Society. (c) Schematic illustration: Lewis base lowers the N2 dissociation activating threshold by acting as an electron donor. C, N, and H atoms are each represented by a cyan, red, and grey spherical. Reprinted with permission from Ref. [197]. Copyright 2020, John Wiley and Sons. (d) The atomic structure of CoP nanoparticles. Reprinted with permission from Ref. [204]. Copyright 2022, Elsevier. (e) DFT calculations investigated the NRR catalytic behavior of Bi-based catalysts. Reprinted with permission from Ref. [205]. Copyright 2020, American Chemical Society.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[5] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[6] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[7] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[8] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[9] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[10] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[11] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[12] | 牛青, 米林华, 陈玮, 李秋军, 钟升红, 于岩, 李留义. 基于共价有机框架的单位点光(电)催化材料的研究进展[J]. 催化学报, 2023, 50(7): 45-82. |
[13] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[14] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
[15] | 井会娟, 龙军, 李欢, 傅笑言, 肖建平. 电催化硝酸盐还原合成氨电势相关性的计算见解[J]. 催化学报, 2023, 48(5): 205-213. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||