催化学报 ›› 2023, Vol. 52: 50-78.DOI: 10.1016/S1872-2067(23)64504-8

• 综述 • 上一篇    下一篇

电化学氮还原氨反应催化剂的最新研究进展

洪岩,1, 王琦,1, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松*(), 李斌*()   

  1. 东北林业大学化学化工与资源利用学院, 黑龙江哈尔滨150040
  • 收稿日期:2023-05-24 接受日期:2023-08-07 出版日期:2023-09-18 发布日期:2023-09-25
  • 通讯作者: *电子信箱: carlosliusong@nefu.edu.cn (刘松),libinzh62@163.com (李斌).
  • 作者简介:1共同第一作者
  • 基金资助:
    国家自然科学基金项目(2208048);国家自然科学基金项目(62001097);黑龙江省自然科学基金项目(YQ2022B001);中国科学青年人才托举工程项目(YESS20210262);中国博士后科学基金面上项目(2021M690571);黑龙江省博士后科学基金面上项目(LBH-Z21096);省自然科学基金联合指导项目(LH2020F001);中央高校基本科研业务费(2572020BU04)

Recent progress in advanced catalysts for electrochemical nitrogen reduction reaction to ammonia

Yan Hong,1, Qi Wang,1, Ziwang Kan, Yushuo Zhang, Jing Guo, Siqi Li, Song Liu*(), Bin Li*()   

  1. College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, Heilongjiang, China
  • Received:2023-05-24 Accepted:2023-08-07 Online:2023-09-18 Published:2023-09-25
  • Contact: *E-mail: carlosliusong@nefu.edu.cn (S. Liu),libinzh62@163.com (B. Li).
  • About author:Song Liu is a professor at Northeast Forestry University. He received his B.S. degree (2014) from Jilin University and his PhD degree (2020) in catalysis from Dalian Institute of Chemical Physics, Chinese Academy of Sciences. His research interests include design and preparation of efficient biomass-based electrocatalytic materials, mechanism analysis of electrocatalytic reaction and electrocatalytic biomass conversion.
    Bin Li is a former professor of Northeast Forestry University, received his master's degree (1989) from the Department of Forestry Engineering of Northeast Forestry University. He received his Ph.D. degree (1997) in Applied Chemistry from Beijing Institute of Technology. His research interests include environment-friendly halogen-free flame retard-antpolymers, functional nanocomposite polymers and biomass and medical polymers.
    1Contribute equally to this work.
  • Supported by:
    National Natural Science Foundation of China(2208048);National Natural Science Foundation of China(62001097);Natural Science Foundation of Heilongjiang Province(YQ2022B001);Young Elite Scientists Sponsorship Program by CAST(YESS20210262);China Postdoctoral Science Foundation-Funded Project(2021M690571);Heilongjiang Postdoctoral Fund(LBH-Z21096);Provincial Natural Science Foundation Joint Guidance Project(LH2020F001);Fundamental Research Funds for the Central Universities(2572020BU04)

摘要:

氨是重要的化工产品之一, 广泛应用于化肥和燃料生产等领域. 目前我国仍采用传统的Haber-Bosch工艺合成氨, 该工艺消耗大量的化石燃料并造成环境污染. 因此, 开发一种高效、环保的氨合成方法代替Haber-Bosch工艺, 减少能源消耗和保护环境具有非常重要的意义. 电化学氮还原(eNRR)工艺由于使用可再生能源, 成为有前景的替代方法之一. 但目前eNRR工艺面临着许多挑战: 较大的过电位以及析氢反应都会导致氨合成反应性能不理想. 因此, 理性设计电催化剂以提高氨合成效率成为当务之急. 本文总结了近年eNRR领域的最新进展, 以期为开发高性能催化剂提供借鉴.

本文从eNRR的反应机理入手, 介绍了eNRR的检测方法和反应条件, 总结了近年来电催化剂的设计策略、原位表征方法和理论计算的研究成果, 并对领域未来发展进行展望. 首先, 从理论热力学和NH3检测等方面讨论了eNRR的关键难点. 然后, 从形态、结构、空位、掺杂、协同效应、异质结构和单原子等多方面总结了eNRR催化剂的设计策略. 此外, 介绍了原位拉曼、原位红外、原位电化学质谱和原位X射线吸收光谱等技术在电催化氮还原机理研究中的重要作用. 讨论了密度泛函理论(DFT)对于研究eNRR过程中的反应能垒和催化剂电子轨道分布的重要作用. 最后, 介绍了当前eNRR所面临的挑战, 并就如何提高NH3产率和选择性提出了建议, 如采用流动电解槽中固-液-气三相界面设计可确保N2与催化剂之间有更大的接触面积和更长的接触时间, 从而提高N2转化率; 改变电解液成分或催化反应条件等方式以延长催化剂的使用寿命; 通过原位表征手段对催化反应过程进行实时监测, 以进一步揭示催化机理等.

综上, eNRR领域取得的进展说明了在水溶液中通过可再生的电力将N2还原成NH3具有可行性. 尽管现阶段存在eNRR效率不高、工艺不成熟等问题, 但随着理论研究与实验结果的更好结合, 原位表征技术的进一步发展和应用, 未来在高效、稳定的氨合成电催化剂设计方面将会取得更大的进展, 进而实现绿色合成氨的工业化应用, 为减少能源消耗和碳排放做出贡献.

关键词: 电催化, 氮还原, 结构设计, 原始表征, 反应体系

Abstract:

Due to its use of renewable energy and environmental friendliness, the electrochemical nitrogen reduction process (eNRR) has become a promising substitute for the manufacturing of ammonia. Despite extensive exploration of eNRR catalysts, an optimal catalyst has not been reported to date. Therefore, it is imperative to develop rational catalysts to enhance NH3 synthesis efficiency. In order to offer suggestions for catalyst design, recent developments in electrocatalysts for eNRR are summarized in this paper. Firstly, the eNRR mechanism is briefly introduced. Secondly, the design strategies of eNRR catalysts were summarized in terms of morphology, structure, vacancies, doping, synergistic effect, heterojunction and single atom. Subsequently, the application of in situ mass spectrometry, in situ infrared, in situ XAS and in situ Raman to the NRR reaction is discussed. The importance of the density-functional theory (DFT) method for the study of reaction energy barriers and catalyst electron-orbital distributions during eNRR catalysis is discussed. Finally, this review presents the potential challenges and future perspectives of eNRR.

Key words: Electrocatalysis, Nitrogen reduction, Structure design, Original characterization, Reaction system