催化学报 ›› 2023, Vol. 50: 109-125.DOI: 10.1016/S1872-2067(23)64452-3

• 综述 • 上一篇    下一篇

钙钛矿氧化物在水裂解反应中的电催化研究

王元男,1, 王立娜,1, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵(), 邹晓新*()   

  1. 吉林大学化学学院, 无机合成与制备化学国家重点实验室, 吉林长春 130012
  • 收稿日期:2023-03-28 接受日期:2023-05-08 出版日期:2023-07-18 发布日期:2023-07-25
  • 通讯作者: *电子信箱: xxzou@jlu.edu.cn (邹晓新), liangxiao@jlu.edu.cn (梁宵).
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    国家重点研发计划(2021YFB4000200);国家自然科学基金(21922507);国家自然科学基金(22179046);国家自然科学基金(22205072);国家自然科学基金(21621001);中国博士后科学基金(2021M701377);111计划(B17020)

Electrocatalytic water splitting over perovskite oxide catalysts

Yuannan Wang,1, Lina Wang,1, Kexin Zhang, Jingyao Xu, Qiannan Wu, Zhoubing Xie, Wei An, Xiao Liang(), Xiaoxin Zou*()   

  1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
  • Received:2023-03-28 Accepted:2023-05-08 Online:2023-07-18 Published:2023-07-25
  • Contact: *E-mail: xxzou@jlu.edu.cn (X. Zou), liangxiao@jlu.edu.cn (X. Liang).
  • About author:Xiao Liang (State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University) received her PhD in inorganic chemistry from Jilin University in 2021. She is currently a postdoctoral researcher at State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University. Her research interests focus on the design of water splitting electrocatalysts, especially the acidic water oxidation electrocatalysts in proton exchange membrane water electrolysis application.
    Xiaoxin Zou (State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University) has received his PhD in inorganic chemistry from Jilin University in June 2011, and then moved to the University of California, Riverside, and Rutgers, The State University of New Jersey, as a postdoctoral scholar from July 2011 to October 2013. He is currently a professor at the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry in Jilin University. His research interests are in hydrogen energy materials chemistry, comprising the elucidation of the atomic basis for water splitting electrocatalysts, prediction and searching of efficient catalysts with novel crystal structures and preparative technology of industrial water splitting catalysts.

    1 Contributed equally to this work.

  • Supported by:
    National Key R&D Program of China(2021YFB4000200);National Natural Science Foundation of China(21922507);National Natural Science Foundation of China(22179046);National Natural Science Foundation of China(22205072);National Natural Science Foundation of China(21621001);China Postdoctoral Science Foundation(2021M701377);111 Project(B17020)

摘要:

氢因具有高热值、资源丰富和环境友好等优点, 被认为是推动全球能源系统脱碳转型的强大动力. 基于可再生能源的电解水制氢技术是实现碳中和目标的重要途径, 该技术亟需开发低成本、高活性和高稳定性的电解水催化剂. 钙钛矿氧化物具有高容忍度的晶体结构、灵活的元素组成和可调变的电子结构, 是开发新型电催化剂的理想材料. 此外, 许多基于钙钛矿氧化物的研究还揭示了电催化剂中涉及的一些催化关键问题, 如构效关系、电子结构调控作用、催化机理以及催化剂的动态结构演化等, 使钙钛矿氧化物逐渐成为推广科学理论的理想模型催化剂. 虽然人们已经在性能优化策略(如元素掺杂、纳米结构工程、缺陷调节)、应用环境(如酸性或碱性介质中)、所含元素(如钴基、铱基和镍基钙钛矿氧化物)等方面对此类催化剂进行了详细总结, 但对其催化时所涉及的诸多关键科学问题却缺乏系统讨论.

本文总结了钙钛矿氧化物在电催化水裂解反应方面的研究进展, 尤其对近期引起关注的关键科学问题进行了详细讨论. 首先回顾了钙钛矿氧化物在催化领域的发展历程, 随后介绍了钙钛矿氧化物在元素组成与晶相结构方面的多样性. 在深入探讨了钙钛矿氧化物中电子特性与催化性能之间的构效关系后, 列举了几种代表性的活性描述符(即eg轨道填充数、B‒O键共价性、O 2p带中心位置和电荷转移能), 分析了各自的适用范围与局限性. 重点研究了钙钛矿型电催化剂在水裂解过程中的催化机理和结构演变, 强调了原位表征技术在监测动态结构信息和识别关键活性物种方面的重要性. 最后, 展望了钙钛矿型催化剂应用于电解水技术中的机遇和挑战, 提出了此类催化剂的未来发展方向: (1) 探索更为理性的材料设计策略; (2) 发展更先进的制备技术; (3) 揭示更深层次的催化/失活机制; (4) 开发更能满足工业需求的高性能催化剂.

关键词: 钙钛矿氧化物, 水裂解反应, 电催化, 电子结构, 催化机理

Abstract:

The urgent need for decarbonized hydrogen production to achieve carbon-neutral targets has highlighted the critical role of water electrolysis technology in advancing sustainability in various fields. However, the gap in economic efficiency between green hydrogen, generated by renewable electricity-driven water electrolysis, and gray hydrogen, generated by the consumption of fossil fuels, remains a challenge. Therefore, the exploration of cost-effective, active, and stable electrocatalysts toward water-splitting reactions is essential. Owing to their high-tolerance crystal structures, flexible elemental compositions, and adjustable electronic properties, perovskite oxides provide a vast material library for customizing next-generation electrocatalysts. Additionally, perovskite oxides are increasingly being developed into ideal model catalysts for unraveling scientific laws and theories, emphasizing the significance of investigating their important characteristics (e.g., structure-performance relationship, electronic property regulation, catalytic mechanism, and dynamic structural evolution). This review summarizes recent advances in perovskite oxides for water-splitting electrocatalysis, including their developmental history, compositional and structural diversities, structure-performance correlations, activity descriptors, catalytic mechanisms, and structural evolutions. We emphasize the importance of in situ characterization techniques for monitoring dynamic structural information and identifying important active species. Finally, we outline the opportunities and challenges of perovskite oxides for practical applications in water electrolysis, with the aim of providing further directions for exploring next-generation electrocatalysts.

Key words: Perovskite oxide, Water-splitting reaction, Electrocatalysis, Electronic structure, Catalytic mechanism