催化学报 ›› 2023, Vol. 50: 324-333.DOI: 10.1016/S1872-2067(23)64454-7

• 论文 • 上一篇    下一篇

富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨

周纳a,b,1, 王家志b,1, 张宁a,b, 王志a,b, 王恒国c, 黄岗a,b, 鲍迪a,*(), 钟海霞a,b,*(), 张新波a,b,*()   

  1. a中国科学院长春应用化学研究所稀土资源利用国家重点实验室, 吉林长春 130022
    b中国科学技术大学应用化学与工程学院, 安徽合肥 230026
    c东北师范大学化学学院, 多酸与网格材料化学教育部重点实验室, 吉林长春 130024
  • 收稿日期:2023-02-28 接受日期:2023-05-15 出版日期:2023-07-18 发布日期:2023-07-25
  • 通讯作者: *电子信箱: xbzhang@ciac.ac.cn (张新波), hxzhong@ciac.ac.cn (钟海霞), dbao@ciac.ac.cn (鲍迪).
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    国家重点研发计划(2021YFB4000402);国家自然科学基金(52071311);国家自然科学基金(52273277);国家自然科学基金(52072362);国家自然科学基金(21905269);吉林省科技发展计划基金项目(20200201079JC);吉林省科技发展计划基金项目(20220201112GX);中科院青年创新促进会(2021223);国家自然科学基金优秀青年科学基金项目(海外)

Defect-rich Cu@CuTCNQ composites for enhanced electrocatalytic nitrate reduction to ammonia

Na Zhoua,b,1, Jiazhi Wangb,1, Ning Zhanga,b, Zhi Wanga,b, Hengguo Wangc, Gang Huanga,b, Di Baoa,*(), Haixia Zhonga,b,*(), Xinbo Zhanga,b,*()   

  1. aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
    bSchool of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
    cKey Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, Jilin, China
  • Received:2023-02-28 Accepted:2023-05-15 Online:2023-07-18 Published:2023-07-25
  • Contact: *E-mail: xbzhang@ciac.ac.cn (X. Zhang), hxzhong@ciac.ac.cn (H. Zhong), dbao@ciac.ac.cn (D. Bao).
  • About author:

    1 Contributed equally to this work.

  • Supported by:
    National Key R&D Program of China(2021YFB4000402);National Natural Science Foundation of China(52071311);National Natural Science Foundation of China(52273277);National Natural Science Foundation of China(52072362);National Natural Science Foundation of China(21905269);Jilin Province Science and Technology Development Plan Funding Project(20200201079JC);Jilin Province Science and Technology Development Plan Funding Project(20220201112GX);Youth Innovation Promotion Association CAS(2021223);National Natural Science Foundation of China Outstanding Youth Science Foundation of China(Overseas)

摘要:

将硝酸盐(NO3-)电化学转化为化学原料和燃料氨(NH3), 有助于可持续地缓解当前严峻的能源和环境危机. 然而, 电催化NO3-还原成NH3(NRA)涉及一个缓慢的八电子转移过程, 并与水系中的析氢反应(HER)相竞争, 这给开发高选择性的NRA催化剂带来巨大挑战. 铜基催化剂是最有应用前景的非贵金属催化剂之一, 被广泛用于电化学NO3-还原研究. 然而, 块体铜通常表现出较低的NH3选择性且伴随HER竞争反应. 近年来, 原位表征技术的快速发展使人们能够观察到电解过程中催化剂的结构演变, 并验证原位生成的新的高活性相和局部结构(如应变、空位和晶面)在触发高效催化反应中的作用. 研究表明, 缺陷位点不仅表现出独特的电子特性, 而且可以调节相邻原子的电子结构, 通过形成新的协同配位结构, 来增强化学吸附和改变中间体能垒从而达到最佳性能, 已被广泛应用于氧析出、氧还原和二氧化碳还原等电催化反应中. 因此, 通过结构演化构建富含铜空位缺陷的催化剂, 有望提高NRA的活性和选择性. 然而, 金属表面缺陷工程对电催化反应的影响研究较少, 相关反应机理仍不清楚. 因此, 阐明空位缺陷对NRA的影响和反应机理对于开发高效NRA催化剂具有重要的指导作用.

本文通过简单的原位电化学重构方法构建了一种高效的富含铜空位缺陷的铜@四氰基对苯醌二甲烷铜(Cu@CuTCNQ)复合催化剂, 用于常温常压NRA反应. X射线衍射精修结果联合X射线吸收光谱表征表明, 成功合成了CuTCNQ络合物, 其中单分散的金属离子Cu的氧化态为+1价, 与N元素配位成键. 采用非原位扫描电子显微镜结合原位电化学拉曼光谱研究了NRA过程中CuTCNQ的形貌和结构演变, C-CN拉曼峰发生蓝移表明从CuTCNQ基底到衍生的Cu位点间的电荷转移作用加强. 高分辨透射电子显微镜结合电子顺磁共振表征结果表明, 衍生的Cu位点表面存在丰富的Cu空位缺陷. 丰富的Cu空位缺陷和优化的电荷转移特性使催化剂性能得以提升, 在含有0.1 mol L-1 NO3-的0.1 mol L-1 KOH溶液中, Cu@CuTCNQ催化剂在-0.6 V vs. RHE还原电位下NRA反应表现出96.4%法拉第效率和144.8 μmol h-1 cm-2的氨产率, 优于结晶性良好的Cu纳米颗粒和大多数Cu基催化剂. 利用在线微分电化学质谱对NRA过程的重要中间体NO*和NO2*进行检测, 并联合理论计算推测反应途径. 结果表明, Cu空位的引入改变了Cu表面的电荷分布, 增强了Cu活性位点对NO3-的吸附, 降低了电势决速步反应能垒, 从而使得NRA的脱氧和加氢过程在热力学上更有利. 同时, 富含Cu空位缺陷的表面有利于抑制析氢竞争反应, 二者共同增强了NRA的活性和选择性. 综上, 本文突出了通过原位电化学重构策略构建高效NRA催化剂的重要性, 并提供了对金属空位-活性依赖性关系的基本理解.

关键词: 硝酸盐还原, 氨合成, 铜空位, 电催化, 电化学重构

Abstract:

Electrochemical conversion of nitrate (NO3) pollutants into chemical feedstock and fuel ammonia (NH3) can contribute to sustainable mitigation of the current severe energy and environmental crises. However, the electrocatalytic NO3 reduction to NH3 (NRA) involves a sluggish multielectron and proton transfer process that competes with the hydrogen evolution reaction (HER) in aqueous media, imposing great challenges in developing highly selective catalysts for NRA. In this study, we developed a copper and copper-tetracyanoquinodimethane composite catalyst (Cu@CuTCNQ), which possesses a high density of copper vacancy defects. This catalyst has been proven to be efficient for NRA through an in situ electrochemical reconstruction method. The structural evolution of CuTCNQ during NRA was investigated by in situ Raman spectroscopy, which indicated an accelerated charge transfer from the CuTCNQ substrate to the derived Cu, which facilitated the adsorption activation of NO3. The obtained Cu@CuTCNQ exhibited an excellent catalytic performance for NRA, with a Faradaic efficiency of 96.4% and productivity of 144.8 μmol h-1 cm-2 at -0.6 V vs. a reversible hydrogen electrode, superior to Cu nanoparticle counterparts and most Cu-based catalysts. Cu vacancy defects and sufficient interfacial charge transfer synergistically optimize the charge distribution of Cu active sites, reduce the energy barrier for NO3 adsorption, and promote deoxidation and hydrogenation processes, thus enhancing NRA and selectivity.

Key words: Nitrate reduction, Ammonia synthesis, Copper vacancy, Electrocatalysis, Electrochemical reconstruction