催化学报 ›› 2023, Vol. 50: 334-342.DOI: 10.1016/S1872-2067(23)64458-4

• 论文 • 上一篇    下一篇

揭示层状晶态CoMoO4的水裂解电催化机制: 从晶面选择到活性位点设计的理论研究

耿仕鹏, 陈利明, 陈海鑫, 王毅, 丁朝斌*(), 蔡丹丹*(), 宋树芹*()   

  1. 中山大学材料科学与工程学院, 化学工程与技术学院, 广东省低碳化学与过程节能重点实验室, 聚合物复合材料及功能材料教育部重点实验室, 广东广州 510275
  • 收稿日期:2023-03-09 接受日期:2023-05-17 出版日期:2023-07-18 发布日期:2023-07-25
  • 通讯作者: *电子信箱: stsssq@mail.sysu.edu.cn (宋树芹), caidandan86@163.com (蔡丹丹), dingzhb@mail.sysu.edu.cn (丁朝斌).
  • 基金资助:
    国家自然科学基金重大研究计划培养项目(90261124);国家自然科学基金项目(21975292);国家自然科学基金项目(21978331);国家自然科学基金项目(22068008);国家自然科学基金项目(52101186);广东省基础与应用基础研究基金项目(2021A1515010167);广东省基础与应用基础研究基金项目(2022A1515011196);广州市基础与应用基础研究计划项目(202201011449);广东省燃料电池技术重点实验室研究基金项目(FC202220);广东省燃料电池技术重点实验室研究基金项目(FC202216)

Revealing the electrocatalytic mechanism of layered crystalline CoMoO4 for water splitting: A theoretical study from facet selecting to active site engineering

Shipeng Geng, Liming Chen, Haixin Chen, Yi Wang, Zhao-Bin Ding*(), Dandan Cai*(), Shuqin Song*()   

  1. The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Laboratory, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
  • Received:2023-03-09 Accepted:2023-05-17 Online:2023-07-18 Published:2023-07-25
  • Contact: *E-mail: stsssq@mail.sysu.edu.cn (S. Song), caidandan86@163.com (D. Cai), dingzhb@mail.sysu.edu.cn (Z. Ding).
  • Supported by:
    Training Program of the Major Research Plan of the National Natural Science Foundation of China(90261124);National Natural Science Foundation of China(21975292);National Natural Science Foundation of China(21978331);National Natural Science Foundation of China(22068008);National Natural Science Foundation of China(52101186);Guangdong Basic and Applied Basic Research Foundation(2021A1515010167);Guangdong Basic and Applied Basic Research Foundation(2022A1515011196);Guangzhou Basic and Applied Basic Research Project(202201011449);Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202220);Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202216)

摘要:

电解水制氢具有效率高、操作简单、易于耦合可再生能源等优点, 被认为是大规模产氢最有希望的技术之一. 通常贵金属基材料Pt和Ir(Ru)O2分别用作阴极析氢反应(HER)和阳极析氧反应(OER)催化剂, 进而提高水裂解效率. 然而, 它们的稀缺性、成本高和稳定性差等缺点严重限制了在电解水中的大规模应用. 因此, 急需开发廉价且高效的水裂解电催化剂. 钼酸钴(CoMoO4)由于成本低、储量丰富、氧化还原活性位点多和稳定性高等优点, 被认为是替代贵金属基催化剂的理想候选者. 但由于CoMoO4复杂的单斜晶体结构, 从原子层面揭示其HER和OER电催化机理仍然是一个极大挑战, 而在原子水平探索电催化剂不同晶面的催化活性对理解电催化机制和识别活性位点起着推动作用.

本文采用密度泛函理论(DFT)从层状晶态CoMoO4的晶面选择到活性位点设计系统研究了其水裂解电催化机制. CoMoO4沿[110]晶格方向呈现层状排列晶体特征, 通过表面能计算并基于Wulff原则构造了CoMoO4的热力学稳定晶体结构, 结果表明, 具有较低表面能的(110)A(62 mJ m‒2)和(001)A(179 mJ m‒2)面均为理论热力学稳定晶体结构的主导晶面, 分别占据了64.25%和23.53%. 因此以(110)A和(001)A晶面为研究对象, 重点研究了其碱性水裂解的电催化活性及其深入的催化机制. 结果发现, 在CoMoO4的(110)A面上的O3位点吸附的H可以与两个氧原子(O3和Oadj)相互作用, 理论计算得到的氢吸附吉布斯自由能(ΔGH*)仅为0.22 eV, 对应了最高的类似Pt的交换电流密度i0, 所以其表现出最优异的HER活性; 另外, (110)A面水解离(Volmer反应)能垒约为1.6 eV, 远低于(001)A的4.6 eV, 说明(110)A面拥有比(001)A面更好的H2O解离能力, 更有利于碱性溶液中的HER. 过渡态计算结果表明, (110)A上的H*更倾向于与另一个来自吸附水的H结合, Heyrovsky步骤的能垒为1.63 eV, 低于两个H*结合形成H2的Tafel步骤能垒(2.04 eV). 因此, CoMoO4催化剂上的HER是沿着Volmer-Heyrovsky步骤进行的. 此外, 根据吉布斯自由能计算, (110)A面上OER过电位仅为0.74 V, 优于(001)A面(0.84 V), 这是因为(110)A面的Co和O间的结合力更强, 中间体*O的吸附状态更稳定, 使得决速步(*OH → *O)能垒降低. 综上, 本文对CoMoO4及其同构物质如Mn(Ni, Fe)MoO4纳米催化剂的选择性合成和电催化机理研究具有借鉴意义.

关键词: 密度泛函理论, 水裂解, 层状晶体CoMoO4, 晶面选择, 活性位点设计

Abstract:

Deciphering the atomic-level properties and mechanism of electrocatalysts for water splitting is vital for the development of highly active non-noble-metal catalysts. Herein, we conduct a detailed study of layered crystalline CoMoO4 using density functional theory (DFT) calculations. The layered arrangement of CoMoO4 along the [110] lattice direction is observed, and the two thermodynamically stable and most exposed (110)A and (001)A crystal facets are selected among all low-index facets by surface energy calculations and Wulff construction to study the electrocatalytic activity for alkaline water splitting and corresponding mechanism. CoMoO4 with an exposed (110)A facet (i.e., CMO (110)A) exhibited a high hydrogen evolution reaction (HER) activity, with a ΔGH* of 0.22 eV, which is similar to that of Pt because the adsorbed H is allowed to interact with two oxygen atoms (O3 and Oadj). The (110)A facet also possesses better H2O adsorption and dissociation abilities than the (001)A facet, benefiting the HER performance in alkaline solutions. Moreover, the overpotential of the (110)A facet for the electrocatalytic oxygen evolution reaction (OER) is only 0.74 V according to the Gibbs free-energy calculation, this overpotential is lower than that of the (001)A facet (0.84 V) owing to the stronger binding and more stable adsorption states between Co and O for the intermediate *O. By allowing us to identify highly active facets and sites, this approach guided the selective synthesis of CoMoO4 and its isostructural substances, such as Mn(Ni, Fe)MoO4 nanocatalysts, for alkaline water splitting.

Key words: Density functional theory, Water splitting, Layered crystalline CoMoO4, Facet selecting, Active-site engineering