催化学报 ›› 2022, Vol. 43 ›› Issue (9): 2273-2300.DOI: 10.1016/S1872-2067(21)63939-6

• 可再生燃料的光催化和光电催化合成专栏 • 上一篇    下一篇

钴基非均相催化剂在光催化水分解、二氧化碳还原和氮还原的研究进展与展望

孙万军a,c, 朱佳玉a, 张美玉a, 孟翔宇a, 陈梦雪a, 冯钰a, 陈新龙a, 丁勇a,b,*()   

  1. a兰州大学化学化工学院, 功能有机分子化学国家重点实验室, 甘肃省先进催化重点实验室, 甘肃兰州730000
    b中国科学院兰州化学物理研究所, 羰基合成与选择氧化国家重点实验室, 甘肃兰州730000
    c甘肃民族师范学院, 化学与生命科学系, 甘肃合作747000
  • 收稿日期:2021-07-14 接受日期:2021-09-07 出版日期:2022-09-18 发布日期:2022-08-05
  • 通讯作者: 丁勇
  • 基金资助:
    国家自然科学基金(21773096);国家自然科学基金(22075119);甘肃省自然科学基金(20JR10RA566);甘肃省自然科学基金(21JR7RA440)

Recent advances and perspectives in cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation

Wanjun Suna,c, Jiayu Zhua, Meiyu Zhanga, Xiangyu Menga, Mengxue Chena, Yu Fenga, Xinlong Chena, Yong Dinga,b,*()   

  1. aState Key Laboratory of Applied Organic Chemistry, Key Laboratory of Advanced Catalysis of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
    bState Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    cDepartment of Chemistry and Life Science, Gansu Normal University for Nationalities, Hezuo 747000, China
  • Received:2021-07-14 Accepted:2021-09-07 Online:2022-09-18 Published:2022-08-05
  • Contact: Yong Ding
  • About author:Yong Ding received his Ph.D. degree in Physical Chemistry from Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, in 2005. Then, he joined the College of Chemistry and Chemical Engineering of Lanzhou University. In 2009, he went to Emory University as a visiting scholar. When he returned back Lanzhou University in 2011, he was promoted to a full professor. He is now the director of the institute of physical chemistry of Lanzhou University and is Feitian scholar distinguished professor of Gansu Province. He joined the editorial board of Chinese Journal of Catalysis in 2020 and Chinese Chemical Letters in 2021. He has published about 130 peer-reviewed papers in primary SCI journals and gave about 50 invited lectures at various scientific conferences so far. Ding’s main research interests are as follows: 1) Artificial photosynthesis; 2) Water splitting by polyoxometalates, metal complexes and metal oxides; 3) Photocatalytic conversion of carbon dioxide; 4) Synthesis, characterization and catalytic applications of polyoxometalates.
  • Supported by:
    National Natural Science Foundation of China(21773096);National Natural Science Foundation of China(22075119);Natural Science Foundation of Gansu Province(20JR10RA566);Natural Science Foundation of Gansu Province(21JR7RA440)

摘要:

利用大自然丰富的太阳能驱动水、二氧化碳或氮气转化为高附加值燃料(如H2, CO, CH4, CH3OH或NH3等), 实现人工光合成, 将储量丰富的太阳能转化为可利用的清洁化学能源, 被认为是解决能源短缺和环境问题的关键技术之一, 能够有效缓解能源危机和全球变暖, 极具应用前景. 因此, 各种类型的光催化剂相继被开发出来, 以满足光催化的需求. 其中钴基多相催化剂是最有前途的光催化剂之一, 它可以通过扩大光吸收范围、促进电荷分离、提供活性位点和降低反应能垒等途径有效提高光催化效率, 为太阳能燃料转化利用开辟广阔的前景.

本文首先介绍了光催化水分解、CO2还原和N2还原的基本原理. 然后, 总结了基于钴基催化剂的改性策略, 包括形貌、晶面、结晶度、掺杂和表面修饰, 重点讨论了钴基多相材料在水分解(产氢、产氧和全解水)、二氧化碳还原以及氮还原领域的光催化进展. 最后, 对钴基光催化剂当前面临的挑战和未来的发展作了展望和总结. 提出了钴基光催化剂未来的一些研究方向. 包括: (1)基于材料光催化体系的设计构建和构效关系研究, 深入探索和探究催化活性位点, 并对不同类型的活性规律进行整合, 从而进一步理解水氧化、氢气生成、二氧化碳还原和氮还原的基本反应规律. (2)作为可持续能源研究的最终目标, 应该更多地关注在不使用牺牲剂和外加偏压的情况下, 有效地实现光催化全水分解、二氧化碳还原和氮还原. (3)尽快建立统一的光催化水分解、二氧化碳还原和氮还原的性能(活性、稳定性、表观量子效率和太阳制氢(或制氨)转换效率)评价标准. (4)发展原位表征技术来观察钴基光催化剂的界面电荷动力学以及真实的反应机理. 综上, 本综述能够为钴基和其他相关光催化材料的高效设计提供借鉴.

关键词: 光催化, 钴基多相催化剂, 水分解, 二氧化碳还原, 氮固定

Abstract:

Solar-driven conversion of carbon dioxide, water and nitrogen into high value-added fuels (e.g. H2, CO, CH4, CH3OH, NH3 and so on) is regarded as an environmental-friendly and ideal route for relieving the greenhouse gas effect and countering energy crisis, which is an attractive and challenging topic. Hence, various types of photocatalysts have been developed successively to meet the requirements of these photocatalysis. Among them, cobalt-based heterogeneous catalysts emerge as one of the most promising photocatalysts that open up alluring vistas in the field of solar-to-fuels conversion, which can effectively enhance photocatalytic efficiency by extending light absorption range, promoting charge separation, providing active sites, and lowering reaction barrier. In this review, we first present the working principles of cobalt-based heterogeneous catalysts for photocatalytic water splitting, CO2 reduction, and N2 fixation. Second, five efficient strategies including surface modification, morphology modulation, crystallinity controlling, crystal engineering and doping, are discussed for improving the photocatalytic performance with different types cobalt-based catalysts (cobalt nanoparticles and single atom, oxides, sulfides, phosphides, MOFs, COFs, LDHs, carbide, and nitrides). Third, we outline the applications for the state-of-the-art photocatalytic CO2 reduction and water splitting, and nitrogen fixation over cobalt-based heterogeneous catalysts. Finally, the central challenges and possible improvements of cobalt-based photocatalysis in the future are presented. The purpose of this review is to summarize the past experience and lessons, and provide reference for the further development of cobalt-based photocatalysis technology.

Key words: Photocatalysis, Cobalt based heterogeneous catalyst, Water splitting, Carbon dioxide reduction, Nitrogen fixation