催化学报 ›› 2022, Vol. 43 ›› Issue (9): 2301-2315.DOI: 10.1016/S1872-2067(21)63918-9
• 可再生燃料的光催化和光电催化合成专栏 • 上一篇 下一篇
张华阳a,*(), 田文婕a, 段晓光a, 孙红旗b, 黄应平c, 方艳芬c, 王少彬a,#(
)
收稿日期:
2021-06-29
接受日期:
2021-08-10
出版日期:
2022-09-18
发布日期:
2022-07-20
通讯作者:
张华阳,王少彬
基金资助:
Huayang Zhanga,*(), Wenjie Tiana, Xiaoguang Duana, Hongqi Sunb, Yingping Huangc, Yanfen Fangc, Shaobin Wanga,#(
)
Received:
2021-06-29
Accepted:
2021-08-10
Online:
2022-09-18
Published:
2022-07-20
Contact:
Huayang Zhang, Shaobin Wang
Supported by:
摘要:
金属原子均匀分散在无机金属基载体上构成一类独特的单原子催化剂(SACs), 在光催化还原反应如析氢反应(HER)、二氧化碳还原反应(CRR)和氮还原反应(NRR)中有重要应用. 关于SACs, 有效的金属-载体相互作用(M-SI)是在载体上锚定金属单原子(SA)位点的关键. SAs主要通过4种方式与载体相互作用: (1)与载体表面“配位不饱和位点”处的原子键合; (2)取代表面原子; (3)与表面有机/无机官能团桥联或者配位; (4)利用载体表面空间限域效应锚定在载体上. 不同的M-SI可获得不同的SAs负载量、配位结构和可调谐性.
本文讨论了金属单原子有效锚定在金属基载体上所需构建的几种典型的M-SI方式. 通过阐述特定SACs在三种光还原反应中的应用实例, 讨论了SA和M-SI对催化性能(反应活性、选择性和稳定性)的影响. 不同的M-SI可将贵金属(如Pt, Pd, Rh和Ru)和非贵金属(如V, Cr, Fe, Mn, Co, Ni, Cu, Mo等)原子固定在半导体载体上, 通过调节配位环境来调控SA的价态、电荷转移、电子寿命和载体能带结构. SA可以充当质子(H+)吸附和还原位点, 可有效提高SACs的HER效率. SA还具有较高的CRR催化活性和选择性, 可以为CO2/中间体提供吸附位点, 增强界面处电荷转移/分离, 增强载体光吸收, 或通过调节反应途径选择性地催化还原CO2为特定产物. 不同M-SI(如共价键、静电吸附或配体桥联)可直接影响SACs在CRR中的活性、选择性和稳定性. 非贵过渡金属Fe和Mo单原子与N原子的强相互作用, 可以使其作为氮吸附和活化位点参与到NRR中. SA可以通过促进N2吸附、N2分子极化或质子偶联, 从而促进N≡N三键解离. SAs可以通过抑制HER副反应来提高NRR选择性. SAs附近的载体原子或空位也可促进反应物的吸附和活化直接参与NRR.
本文还展望了金属基载体锚定SACs的未来发展及构建此类催化剂面临的挑战. 目前关于金属基载体支撑的SACs的研究大多未涉及水氧化反应. 区分SA和载体是如何协同促进水氧化和质子还原反应非常重要, 金属基载体SACs的负载量远低于碳或碳氮材料. 半导体的导电性较差、耐光腐蚀能力弱等固有局限性不可避免地影响了其作为SA金属载体的稳定性和活性. 此外, SAs在金属基载体配位环境的精确调控以及表征至关重要, 但也极具挑战. 总之, 本文对全面认识金属基载体支撑的SACs及其在异相光催化中的应用起到很好的补充.
张华阳, 田文婕, 段晓光, 孙红旗, 黄应平, 方艳芬, 王少彬. 金属基载体支撑的单原子催化剂用于光催化还原反应[J]. 催化学报, 2022, 43(9): 2301-2315.
Huayang Zhang, Wenjie Tian, Xiaoguang Duan, Hongqi Sun, Yingping Huang, Yanfen Fang, Shaobin Wang. Single-atom catalysts on metal-based supports for solar photoreduction catalysis[J]. Chinese Journal of Catalysis, 2022, 43(9): 2301-2315.
Fig. 1. (a) Schematic illustration of M-SI patterns for anchoring SA metals on metal-based supports. (b) The contributions of SA metals on metal-based supports for enhanced photocatalytic HER, CRR, and NRR.
Fig. 2. (a-c) Loading of SA metals via SCUS: (a) STM image of Pt species deposited CeO2 (111) surface (Pt single atom at the step edges (bright edges); Pt clusters on the Ovs (bright dots)). Adapted with permission from Ref. [23], Copyright 2016, Springer Nature. (b,c) High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images of Pt SAs located on different Ovs of TiO2 (110) surface. Adapted with permission from Ref. [29], Copyright 2014, American Chemical Society. (d) Underpotential electrodeposition process for anchoring Mo SAs on an inert S site of MoS2. Adapted with permission from Ref. [19], Copyright 2020, Springer Nature. (e) SA metal loading via a bridging ligand. The -SH in L-cysteine bridged with Au clusters, while the C groups in L-cysteine coordinated with SA metal cations (Au-C-M). Adapted with permission from Ref. [36], Copyright 2018, American Chemical Society. (f) SA metal loading via spatial confinement. Interaction between [PtCl4]2- and surface cavities for confining the Pt SAs. Adapted with permission from Ref. [37], Copyright 2020, Springer Nature.
Fig. 3. (a) The synthesis process of defective TiO2 nanotube supported Pt SAs. (b) HAADF-STEM of Pt SAs/defective TiO2. Pt SAs marked by the circles, scale bar: 2 nm. (c) HER performance of Pt SAs/TiO2 in 2 h under UV/Vis light; sacrificial electron donor: CH3OH. (a-c) Adapted with permission from Ref. [79], Copyright 2020, Wiley-VCH. (d) Selective photo-deposition of Pt SAs on (101) facet of TiO2 for HER. (e) Size distribution of Pt SAs on TiO2 single-crystal (TiO2-A) and Pt NPs on commercial TiO2 (TiO2-0); and (f) photocatalytic HER with TiO2-A, Pt1/TiO2-A, and Pt/TiO2-0. (d-f) Adapted with permission from Ref. [81]. Copyright 2017, Elsevier. (g) Photocatalytic HER performance comparison over Pt SAs, Pt NPs loaded CdS, and pristine CdS. Adapted with permission from Ref. [22]. Copyright 2018, Elsevier.
Fig. 4. (a) Photos of Cu SAs/TiO2 film in different states of a photoactivation cycle. (b) Related photoactivation cycle. (c) Photocatalytic HER rates of different types of SAs on TiO2 with same loading 0.75 wt%. (a-c) Adapted with permission from Ref. [96], Copyright 2019, Springer Nature. (d) Molten-salt-mediated anchoring of Ni SAs on TiO2. (e) Free energy versus the H* of different active sites; HER performance of Ni-SAs/TiO2 (f) and its comparison with Ni-NP/TiO2, and Pt/TiO2 (g) with the same loading amount (ca. 0.5 wt%). (d-f) Adapted with permission from Ref. [90], Copyright 2020, Wiley-VCH.
Fig. 5. (a,b) TEM and illustration of single Ag chain in the lattice channel of MnO2 (Ag-HMO). (c) Photocatalytic CRR comparison of HMO, Ag/HMO and Ag-HMO. (a-c) Adapted with permission from Ref. [62,106]. Copyright 2019, Elsevier. (d) TEM image of Pd7Cu1-TiO2. (e) Average production rates of CH4 and CO in photocatalytic CRR with H2O by bare TiO2, Pd, and PdxCu1 with different ratios. (d,e) Adapted with permission from Ref. [50]. Copyright 2019, American Chemical Society. (f) Proposed reaction pathways for photocatalytic CRR over Cu SAs-mTiO2. (g) Photocatalytic CRR results of mTiO2 and 1Cu SAs-mTiO2. (f,g) Adapted with permission from Ref. [107]. Copyright 2019, American Chemical Society. (h) Energy band positions for CdS QDs and Ni:CdS QDs for the CO2 reduction potentials (pH = 7); Illustration (i) and photocatalytic CRR comparison (j) of Ni2+ species on QDs with the different anchoring modes. (k) Cycling production of CH4 and CO using Ni (0.26%):CdS QDs. (h-k) Adapted with permission from Ref. [47]. Copyright 2018, Wiley-VCH.
Fig. 6. (a,b) HAADF-STEM images of Ru-SAs/Def-TiO2; Photoexcited electron transfer involved in Ru-SAs/Def-TNs (c), and Ru-NPs/Def-TNs (d). (a-d) Adapted with permission from Ref. [123]. Copyright 2020, American Chemical Society. (e) STEM images of Fe-T-S with 2% loading amount; Photocatalytic H2 and O2 evolution (f), and NRR (g) of different samples under 300 W Xe lamp irradiation. (e-g) Adapted with permission from Ref. [124]. Copyright 2020, American Chemical Society. (h) Illustration for the synthesis of Mo-doped W18O49 ultrathin nanowires. (i) Photocatalytic NH3 production rates by different samples, using Na2SO3 as a sacrificial agent and under full-spectrum or visible-NIR light (λ > 400 nm) irradiation. (h,i) Adapted with permission from Ref. [125]. Copyright 2018, American Chemical Society.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[5] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[6] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[7] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[8] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[9] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[10] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[11] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[12] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
[13] | 孙利娟, 王伟康, 路平, 刘芹芹, 王乐乐, 唐华. 纳米高熵合金实现光催化剂肖特基势垒的调控用于光催化制氢与苯甲醇氧化耦合反应[J]. 催化学报, 2023, 51(8): 90-100. |
[14] | 刘海峰, 黄祥, 陈加藏. 电子态调控促进氢气无损耗纯化中CO的光致富集和氧化[J]. 催化学报, 2023, 51(8): 49-54. |
[15] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||