催化学报 ›› 2021, Vol. 42 ›› Issue (11): 1903-1920.DOI: 10.1016/S1872-2067(21)63841-X
郝磊端a, 夏启能b,$(), 张强c,#(
), Justus Masad, 孙振宇a,*(
)
收稿日期:
2021-04-15
修回日期:
2021-04-15
出版日期:
2021-11-18
发布日期:
2021-05-20
通讯作者:
夏启能,张强,孙振宇
基金资助:
Leiduan Haoa, Qineng Xiab,$(), Qiang Zhangc,#(
), Justus Masad, Zhenyu Suna,*(
)
Received:
2021-04-15
Revised:
2021-04-15
Online:
2021-11-18
Published:
2021-05-20
Contact:
Qineng Xia,Qiang Zhang,Zhenyu Sun
About author:
#Tel: +1-509-335-1269; E-mail: q.zhang@wsu.eduSupported by:
摘要:
近年来, 大气中CO2的浓度不断增加, 带来全球变暖等一系列严重后果, 成为国际社会共同关注的环境问题. 将CO2催化转化为高附加值化学品可有效降低其向大气中的排放, 同时可实现其资源化利用, 符合低碳社会的发展目标. 目前, 已有多种催化体系实现了CO2向不同化学品的转化. 然而, 由于CO2自身的热力学稳定性和动力学惰性, 这些转化通常需要在苛刻的反应条件和较高能耗下进行. 设计开发高效催化体系、实现温和条件下CO2的转化利用引起了工业界和学术界的广泛兴趣.
金属有机骨架材料(MOFs)是一类由有机配体和金属中心通过配位键组装而成的有机-无机杂化材料, 在很多方面展现出良好的应用性能. 由于其结构的多样性、可设计性、高比表面积和多孔性等独特性质, MOFs在催化领域吸引了很多研究者的关注. 其中, MOFs作为非均相催化剂在CO2热催化转化中表现出良好的应用前景, 已实现多种CO2向高值化学品的转化路径. 但这些催化体系也存在一些缺点, 如有些MOFs材料在催化反应中稳定性差以及其微孔性对反应中的传质造成限制等. 因此, 设计稳定的MOFs和MOF-基材料并对其结构进行优化改性, 从而在温和条件下实现高效的CO2转化具有重要意义.
本文综述了提高MOFs在CO2热催化转化反应中性能的几种策略: (1)对MOFs结构中的配体进行设计, 包括具有活性官能团的配体、活性配合物作为配体和引入混合配体设计多元MOF; (2)调节MOFs结构中的金属中心, 设计混合金属中心和包含活性金属团簇的金属中心; (3)构筑多级孔MOFs; (4)设计MOF-基的复合材料, 包括MOFs作为载体与金属纳米颗粒、活性配合物和聚合物构建复合材料; (5)利用MOFs作为前驱体制备MOF-基衍生物材料, 重点阐述了如何增加MOFs作为非均相催化剂的催化活性位点以及在CO2转化反应中各位点之间的协同作用. 此外, 介绍了原位表征技术在MOF-基材料用于CO2固定和转化中的应用. 最后, 分析了MOF-基非均相催化材料在CO2热催化转化领域目前面临的问题和挑战, 包括MOFs材料结构优化、催化机理研究和规模化制备等方面, 并对未来的发展趋势进行了展望.
郝磊端, 夏启能, 张强, Justus Masa, 孙振宇. 提高金属有机骨架材料在二氧化碳热催化转化中的性能: 策略及前景展望[J]. 催化学报, 2021, 42(11): 1903-1920.
Leiduan Hao, Qineng Xia, Qiang Zhang, Justus Masa, Zhenyu Sun. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives[J]. Chinese Journal of Catalysis, 2021, 42(11): 1903-1920.
Fig. 1. (a) The structure of the H8L1 ligand; (b) perspective view of 3D porous framework of NTU-180 (yellow and blue balls represent two kinds of pores). Adapted with permission from Ref. [64]. Copyright 2016, American Chemical Society. (c) The structure of the acylamide-containing ligand.
Fig. 2. The structure of the metallosalen-derived dicarboxylic ligand and the construction of ZSF-1. Adapted with permission from Ref. [44]. Copyright 2018, American Chemical Society.
Fig. 3. (a-c) Schematic illustration of the synthesis of ZnTCPP?(Br-)Etim-UiO-66: Sequential mixed-ligands of different geometry, post-synthetic ionization, and post-synthetic metalation strategy (a); one-pot synthesis based on [(Br-)(Etim-H2BDC)+] ligand (b, c). Im-Zr6, imidazole functionalized Zr6 cluster; (Br-)Etim-Zr6, imidazolium functionalized Zr6 cluster. The yellow sphere represents the pore cavity. (d) Proposed mechanism of the catalytic process. Adapted with permission from Ref. [85]. Copyright 2018, American Chemical Society.
Reaction | Catalyst/Active sites | Optimal reaction conditions and performance | Ref. |
---|---|---|---|
| 1-Zn/Lewis acidic Zn2+ | r.t., 1.2 MPa, 60 h, 3.75 mol% TBAB; propylene carbonate yield: 99% | [ |
Yb-DDIA/Lewis acidic Yb3+ | 60 °C, 1.0 MPa, 12 h, 0.5 mol% TBAB; 5 substrates, yield: up to 93% | [ | |
RE-BDC (RE = Y or Tb or Er)/Y3+ or Tb3+ or Er3+ | 60 °C, 1.0 MPa, 12 h, 1.05 mol% TBAB; 5 substrates, yield: up to 95% | [ | |
Sm-BTB/Sm3+ | 80 °C, 0.1 MPa, 15 h, 1.0 mol% TBAB; 5 substrates, yield: up to 100% | [ | |
CZ-BDO/Co-Zn and Lewis basic N | 100 °C, 3.0 MPa, 5 h; 4 substrates, yield: up to 97.05% | [ | |
| ErCo-1/Er3+ | 70 °C, 1.0 MPa, 10 h, 5.0 mol% TBAB; 5 substrates, yield: up to 94% | [ |
| CuGd-I or CuGd-II/ [Cu12I12] or [Cu3I2] | 80 °C, 0.1 MPa, 4 h, 1.2 equiv. Cs2CO3, 1.2 equiv. nBuI, ethylene carbonate; 14 substrates, yield: up to 86% | [ |
| CuIn-1/[Cu4I4] and In3+ | 50 °C, 0.5 MPa, 10 h, TEA; 8 substrates, yield: up to 99% | [ |
| Ag27-MOF/Ag | 25 °C, 0.1 MPa, 6 h, 0.1 equiv. DBU, acetonitrile; 12 substrates, yield: up to 99% | [ |
Table 1 CO2 conversion reactions catalyzed by MOFs with designed metal centers.
Reaction | Catalyst/Active sites | Optimal reaction conditions and performance | Ref. |
---|---|---|---|
| 1-Zn/Lewis acidic Zn2+ | r.t., 1.2 MPa, 60 h, 3.75 mol% TBAB; propylene carbonate yield: 99% | [ |
Yb-DDIA/Lewis acidic Yb3+ | 60 °C, 1.0 MPa, 12 h, 0.5 mol% TBAB; 5 substrates, yield: up to 93% | [ | |
RE-BDC (RE = Y or Tb or Er)/Y3+ or Tb3+ or Er3+ | 60 °C, 1.0 MPa, 12 h, 1.05 mol% TBAB; 5 substrates, yield: up to 95% | [ | |
Sm-BTB/Sm3+ | 80 °C, 0.1 MPa, 15 h, 1.0 mol% TBAB; 5 substrates, yield: up to 100% | [ | |
CZ-BDO/Co-Zn and Lewis basic N | 100 °C, 3.0 MPa, 5 h; 4 substrates, yield: up to 97.05% | [ | |
| ErCo-1/Er3+ | 70 °C, 1.0 MPa, 10 h, 5.0 mol% TBAB; 5 substrates, yield: up to 94% | [ |
| CuGd-I or CuGd-II/ [Cu12I12] or [Cu3I2] | 80 °C, 0.1 MPa, 4 h, 1.2 equiv. Cs2CO3, 1.2 equiv. nBuI, ethylene carbonate; 14 substrates, yield: up to 86% | [ |
| CuIn-1/[Cu4I4] and In3+ | 50 °C, 0.5 MPa, 10 h, TEA; 8 substrates, yield: up to 99% | [ |
| Ag27-MOF/Ag | 25 °C, 0.1 MPa, 6 h, 0.1 equiv. DBU, acetonitrile; 12 substrates, yield: up to 99% | [ |
Fig. 4. Plausible mechanism of cycloaddition reaction between CO2 and epoxides catalyzed by CZ-BDO. Adapted with permission from Ref. [53]. Copyright 2020, Royal Society of Chemistry.
Fig. 5. (a) Schematic illustration of the synthesis of hierarchically porous mesoCu@Al-bpydc; (b) catalytic performance of microCu@Al-bpydc and mesoCu@Al-bpydc with different epoxides. Adapted with permission from Ref. [115]. Copyright 2019, WILEY-VCH.
Fig. 6. (a) The building blocks of mesoporous JLU-MOF58 (simplified as linear rod and cube); (b) two types of mesoporous cages in JLU-MOF58. Adapted with permission from Ref. [54]. Copyright 2019, American Chemical Society.
Fig. 8. Schematic illustration of the preparation of CuZn@UiO-bpy. Adapted with permission from Ref. [120]. Copyright 2017, American Chemical Society.
Reaction | Catalyst/Active sites | Optimal reaction conditions and performance | Ref. |
---|---|---|---|
| Ag@MIL-101(Cr)/Ag Ag@MIL-101(Fe)/Ag Ag@UiO-66(Zr)/Ag | 50 °C, 0.1 MPa, 15 h, 1.5 equiv. Cs2CO3, DMF; 5 substrates, yield: up to 98.7% | [ |
Ag@Co(II)-salicylate/Ag | 80 °C, 0.1 MPa, 14 h, 1.5 equiv. Cs2CO3, DMF; 7 substrates, yield: up to 98% | [ | |
Pd-Cu@MIL-101(Cr)/Pd-Cu | 25 °C, 0.1 MPa, 24 h, 1.5 equiv. Cs2CO3, DMF; 5 substrates, yield: up to 98% | [ | |
AuAg@ZIF-8/AuAg | 50 °C, 0.1 MPa, 24 h, 0.24 equiv. K2CO3, DMF; 6 substrates, yield: up to 100% | [ | |
CO2 hydrogenation to methanol | CuZn@UiO-bpy/Cu/ZnOx | 250 °C, 4 MPa total pressure; methanol space-time yield: 2.59 gMeOH kgCu-1 h-1, selectivity: 100% | [ |
Cu@UiO-66/Cu | 175 °C, 1 MPa total pressure; methanol selectivity: 100%, TOF: 3.7 × 10-3 s-1 | [ | |
CO2 hydrogenation to light olefins | Fe2O3@ZIF-8/Fe2O3 | 300 °C, 3 MPa total pressure; light olefin C2-C4 selectivity: ~20% | [ |
CO2 hydrogenation to methane | Ni@MIL-101(Cr)/Ni | 300 °C, H2 to CO2 ratio = 4:1; methane selectivity: 100%, TOF: 1.63 × 10-3 s-1 | [ |
Ni@UiO-66/Ni | 300 °C, 1 MPa total pressure; CO2 conversion: 57.6%, methane selectivity: 100% | [ | |
CO2 hydrogenation to CO | Pt@UiO-67/Pt | 220-280 °C, H2 to CO2 ratio = 6:1; CO selectivity: > 90% | [ |
Pt@MOF-74(Zn)/Pt | 400 °C, 2 MPa total pressure, H2 to CO2 ratio = 3:1; CO2 conversion: 33.8%, CO selectivity: > 99% | [ | |
Pt-Au@Pd@[Co2(oba)4(3-bpd h)2]·4H2O/Pt-Au@Pd | 400 °C, 2 MPa total pressure, H2 to CO2 ratio = 3:1; CO2 conversion: 15.6%, CO selectivity: 87.5% | [ |
Table 2 CO2 conversion reactions catalyzed by MNPs@MOFs.
Reaction | Catalyst/Active sites | Optimal reaction conditions and performance | Ref. |
---|---|---|---|
| Ag@MIL-101(Cr)/Ag Ag@MIL-101(Fe)/Ag Ag@UiO-66(Zr)/Ag | 50 °C, 0.1 MPa, 15 h, 1.5 equiv. Cs2CO3, DMF; 5 substrates, yield: up to 98.7% | [ |
Ag@Co(II)-salicylate/Ag | 80 °C, 0.1 MPa, 14 h, 1.5 equiv. Cs2CO3, DMF; 7 substrates, yield: up to 98% | [ | |
Pd-Cu@MIL-101(Cr)/Pd-Cu | 25 °C, 0.1 MPa, 24 h, 1.5 equiv. Cs2CO3, DMF; 5 substrates, yield: up to 98% | [ | |
AuAg@ZIF-8/AuAg | 50 °C, 0.1 MPa, 24 h, 0.24 equiv. K2CO3, DMF; 6 substrates, yield: up to 100% | [ | |
CO2 hydrogenation to methanol | CuZn@UiO-bpy/Cu/ZnOx | 250 °C, 4 MPa total pressure; methanol space-time yield: 2.59 gMeOH kgCu-1 h-1, selectivity: 100% | [ |
Cu@UiO-66/Cu | 175 °C, 1 MPa total pressure; methanol selectivity: 100%, TOF: 3.7 × 10-3 s-1 | [ | |
CO2 hydrogenation to light olefins | Fe2O3@ZIF-8/Fe2O3 | 300 °C, 3 MPa total pressure; light olefin C2-C4 selectivity: ~20% | [ |
CO2 hydrogenation to methane | Ni@MIL-101(Cr)/Ni | 300 °C, H2 to CO2 ratio = 4:1; methane selectivity: 100%, TOF: 1.63 × 10-3 s-1 | [ |
Ni@UiO-66/Ni | 300 °C, 1 MPa total pressure; CO2 conversion: 57.6%, methane selectivity: 100% | [ | |
CO2 hydrogenation to CO | Pt@UiO-67/Pt | 220-280 °C, H2 to CO2 ratio = 6:1; CO selectivity: > 90% | [ |
Pt@MOF-74(Zn)/Pt | 400 °C, 2 MPa total pressure, H2 to CO2 ratio = 3:1; CO2 conversion: 33.8%, CO selectivity: > 99% | [ | |
Pt-Au@Pd@[Co2(oba)4(3-bpd h)2]·4H2O/Pt-Au@Pd | 400 °C, 2 MPa total pressure, H2 to CO2 ratio = 3:1; CO2 conversion: 15.6%, CO selectivity: 87.5% | [ |
Fig. 9. Schematic illustration of the synthesis of (a) (R,R)-salen(Co(III))@IRMOF-3-AM. Adapted with permission from Ref. [132]. Copyright 2017, Royal Society of Chemistry. (b) Salen-Cu(II)@MIL-101(Cr). Adapted with permission from Ref. [133]. Copyright 2017, Elsevier.
Fig. 10. Schematic illustration of the synthesis of [Ru]@UiO-66 through aperture-opening encapsulation. Adapted with permission from Ref. [137]. Copyright 2018, American Chemical Society.
Fig. 11. (a) Schematic illustration of the synthesis of polyILs@MIL-101; (b) Catalytic performance of different catalysts. Adapted with permission from Ref. [138]. Copyright 2018, American Chemical Society.
Fig. 12. Schematic illustration of (a) the synthesis of ZnO@NPC-Ox toward CO2 cycloaddition with epoxides. Adapted with permission from Ref. [146]. Copyright 2017, WILEY-VCH. (b) The fabrication of HPC. Adapted with permission from Ref. [147]. Copyright 2019, WILEY-VCH.
Fig. 13. Schematic illustration of the synthesis of M@CSN nanoreactor. M represents monometallic or bimetallic nanoparticles; mSiO2 = mesoporous SiO2; R-NBH4 = tetrabutylammonium borohydride; CTAC = cetyltrimethylammonium chloride; TEOS = tetraethylorthosilicate. Adapted with permission from Ref. [151]. Copyright 2017, American Chemical Society.
Fig. 14. In situ FT-IR spectra of the reaction between CO2 and epichlorohydrin catalyzed by (I-)Meim-UiO-66, whose spectrum was subtracted for clarity. Adapted with permission from Ref. [159]. Copyright 2017, Royal Society of Chemistry.
|
[1] | 安国庆, 张晓伟, 张灿阳, 高鸿毅, 刘斯奇, 秦耕, 齐辉, Jitti Kasemchainan, 张建伟, 王戈. 金属有机骨架基绿色催化剂在醇氧化反应中的研究应用[J]. 催化学报, 2023, 50(7): 126-174. |
[2] | 危长城, 张雯娜, 杨阔, 柏秀, 徐舒涛, 李金哲, 刘中民. CO2作为化学品原料的高效利用途径: 与烷烃耦合反应[J]. 催化学报, 2023, 47(4): 138-149. |
[3] | 林莉, 何潇洋, 谢顺吉, 王野. CO2电催化转化迈向大规模化的挑战与展望[J]. 催化学报, 2023, 53(10): 1-7. |
[4] | 陈杨屾, 阚淼, 燕帅, 张俊波, 刘坤豪, 严雅琴, 关安翔, 吕希蒙, 钱林平, 郑耿锋. 类空气浓度的二氧化碳的高效电还原[J]. 催化学报, 2022, 43(7): 1703-1709. |
[5] | 刘储浩, 吴悦, 方锦杰, 余坷, 李慧, 贺文君, 张永臻, 柳守杰, 陈郑, 董京, 陈晨. 氮掺杂碳催化剂在高效电化学CO2还原中的协同效应[J]. 催化学报, 2022, 43(7): 1697-1702. |
[6] | 成金玲, 王定胜. 二维水滑石复合材料用于电解水的研究进展[J]. 催化学报, 2022, 43(6): 1380-1398. |
[7] | 钟威, 许家超, 王苹, 朱必成, 范佳杰, 余火根. 新型核壳Ag@AgSex纳米粒子析氢助剂: 原位表面硒化以提升TiO2的光催化产氢活性[J]. 催化学报, 2022, 43(4): 1074-1083. |
[8] | 张博禹, 石家福, 赵阳, 王涵, 储子仪, 陈裕, 吴振华, 姜忠义. 基于扩散强化的Pickering界面生物催化系统构建及CO2矿化过程研究[J]. 催化学报, 2022, 43(4): 1184-1191. |
[9] | 吕希蒙, 陈锰寰, 谢朝龙, 钱林平, 张丽娟, 郑耿锋. 固态氧化物电解池中碳一分子电化学转化为可再生燃料[J]. 催化学报, 2022, 43(1): 92-103. |
[10] | 李祥琨, 李召辉, 刘燕, 刘恒均, 赵志强, 郑莹, 陈林源, 叶万能, 李洪森, 李强. 实时磁性测试深入理解锂离子电池中的过渡金属催化作用[J]. 催化学报, 2022, 43(1): 158-166. |
[11] | 赵小雪, 李金择, 李鑫, 霍鹏伟, 施伟东. 金属有机框架(MOFs)基光催化剂的设计及其在太阳能燃料生产和污染物降解领域的研究进展[J]. 催化学报, 2021, 42(6): 872-903. |
[12] | 罗靖洁, 董亚南, Corinne Petit, 梁长海. 不可还原材料负载的纳米金催化剂: 理性设计与优化[J]. 催化学报, 2021, 42(5): 670-693. |
[13] | 栾慧敏, 雷驰, 马野, 吴勤明, 朱龙凤, 徐好, 韩世超, 朱秋艳, 刘小龙, 孟祥举, 肖丰收. 在无有机导向剂条件下采用乙醇为助剂合成高硅沸石[J]. 催化学报, 2021, 42(4): 563-570. |
[14] | 郑笑笑, 齐思慧, 曹彦宁, 沈丽娟, 区泽棠, 江莉龙. 乙酸调控MIL-53(Fe)的形貌演变及其高效选择性氧化H2S性能[J]. 催化学报, 2021, 42(2): 279-287. |
[15] | 贾帅强, 朱庆宫, 吴海虹, 楚萌恩, 韩世涛, 冯如婷, 涂京慧, 翟建新, 韩布兴. 铜–锑双金属合金高效电催化还原二氧化碳制乙烯[J]. 催化学报, 2020, 41(7): 1091-1098. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||