催化学报 ›› 2022, Vol. 43 ›› Issue (6): 1380-1398.DOI: 10.1016/S1872-2067(21)63987-6
收稿日期:
2021-10-01
接受日期:
2021-10-01
出版日期:
2022-06-18
发布日期:
2022-04-14
通讯作者:
王定胜
基金资助:
Jinling Cheng, Dingsheng Wang*()
Received:
2021-10-01
Accepted:
2021-10-01
Online:
2022-06-18
Published:
2022-04-14
Contact:
Dingsheng Wang
Supported by:
摘要:
催化在化学研究和相关工业活动中起着关键作用. 气候变化、环境问题和能源安全等因素促使人们寻求清洁和可再生能源的想法更加迫切. 电解水直接将H2O分解为H2和O2, 对于氢能的清洁生产和促进低碳经济的发展具有重要意义. 电解水反应由发生在阴极的析氢反应(HER)与发生在阳极的析氧反应(OER)构成. 其中, HER涉及两个电子的转移, 而OER涉及多个质子和电子转移, 被认为是整个水分解过程的限速步骤, 而且其反应动力学缓慢严重限制了水分解的整体效率.
近年来, 开发高效催化剂加速两个电极上的电解反应动力学, 无论从基础研究还是实际应用都引起了人们的极大兴趣. 过渡金属层状水滑石(LDHs)类材料已被证明是最有效的OER材料之一, 但仍存在导电性低、析氢反应动力学缓慢等问题, 极大地抑制了电解水效率. 为了解决这个难题, 研究者们尝试了大量的改进方法, 包括掺杂调控、插层调谐和缺陷工程等. 受石墨烯发现的启发, 二维材料, 如石墨氮化碳、过渡金属硫化合物、过渡金属氧化物、氢氧化物和二维过渡金属碳(氮)化物, 已经在各个研究领域得到广泛应用, 特别是其独特的结构和电子性能, 为电化学能量转换/存储应用开辟了新的方向.
本文总结了LDHs复合其它二维材料应用于电解水的最新进展, 重点介绍了材料的设计、合成、表征、活性和稳定性. 由于前期的综述主要集中在增强LDHs的OER性能, 包括LDHs纳米片的调制组成、LDHs的配位环境以及与其它材料的杂化等, 本文着重于介绍HER/OER双功能电解水的应用. 归纳了LDH材料本身的结构特性及影响电极催化性能的关键吸附中间物种. 根据不同二维材料, 即二维碳材料、过渡金属硫化物、二维过渡金属碳化物以及其它化合物进行分类讨论, 总结了相关电解水催化研究现状, 并针对不同类型的复合电解水催化剂目前的发展情况, 提出了它们各自存在的问题. 值得注意的是, 基于LDHs的复合材料被认为是一种最具潜力的双功能电催化剂. 该种复合材料可以在同一电解质中同时驱动HER和OER两个反应, 这对加快整体水分解过程的反应速率并降低活化能至关重要. 本文还对电解水中双功能LDHs杂化材料的设计、调变以及实际应用中面临的挑战进行了展望.
成金玲, 王定胜. 二维水滑石复合材料用于电解水的研究进展[J]. 催化学报, 2022, 43(6): 1380-1398.
Jinling Cheng, Dingsheng Wang. 2D materials modulating layered double hydroxides for electrocatalytic water splitting[J]. Chinese Journal of Catalysis, 2022, 43(6): 1380-1398.
Fig. 1. In situ growth of a secondary 2D material onto LDH sheets. (a) MoS2 onto NiFeCr-LDH. Reprinted with permission from Ref. [62]. Copyright 2021, Elsevier. (b) MOF nanosheets grow on NiFe-LDH by SVPT methodology. Reprinted with permission from Ref. [63]. Copyright 2019, Wiley-VCH.
Fig. 2. In situ growth of LDH on the other 2D material. (a) The synthesis process of CoMn-LDH@g-C3N4 nanohybrid and corresponding TEM pictures and XPS spectra. Reprinted with permission from Ref. [65]. Copyright 2018, Wiley VCH. (b) The synthesis process of 2D hierarchical FeNi-LDH/Ti3C2 by in-situ assembling ultrathin FeNi-LDH nanosheets on exfoliated Ti3C2 MXene nanoplates and corresponding DOS data. Reprinted with permission from Ref. [66]. Copyright 2019, Elsevier. (c) The synthesis of ZIF-67 derived NiFe-LDH on ultrathin Mxene Nanosheets and corresponding HRTEM and N2 adsorption isotherms. Reprinted with permission from Ref. [67]. Copyright 2018, the American Chemical Society.
Fig. 3. (a) Schematic illustration of synthesis of hybridization by s electrostatic-assembly of two kinds of unilamellar nanosheets with oppositely charged. (b) LDH@G. (c) MoS2@G. (d) MoS2@LDH. Reprinted with permission from Ref. [70]. Copyright 2019, American Chemical Society.
Fig. 4. (a) Schematic illustration of the synthesis processing of (Co,Ni)Se2@NiFe LDH. Reprinted with permission from Ref. [71]. Copyright 2019, American Chemical Society. (b) Schematic illustration of the synthesis procedure of NiCo-LDH/Co4S3 on the nickel foam via a two-step process. Reprinted with permission from Ref. [72]. Copyright 2021, Elsevier.
Fig. 5. The synthesis, characterization and electrochemical application for hybridization between LDH and the GO/rGO sheets. (a) A schematic diagram of the electrostatic flocculation of NiFe-LDH@GO (rGO) hybrid. (b) XRD pattern hybrid composites for NiFe-LDH hybrid GO (i) and rGO (ii). (c,d) TEM and HRTEM of alternately stacked NiFe-LDH and GO. (e-h) Electrocatalytic performance of NiFe-LDH@rGO, NiFe-LDH@GO, NiFe-LDH. (i) Home-built water-splitting cell. Reprinted with permission from Ref. [79]. Copyright 2015, the American Chemical Society.
Fig. 6. N-doped graphene framework anchored onto NiFe-LDH nanosheets (a,b) and the application for electrochemical catalysts (c). Reprinted with permission from Ref. [80]. Copyright 2015, Royal Society of Chemistry.
Fig. 7. The hybridization based on LDH@graphdiyne and their application for water splitting. (a-e). The sandwiched graphdiyne@FeCo-LDH. Reprinted with permission from Ref. [84]. Copyright 2018, Springer Nature. (f-i) Superhydrophilic graphdiyne@CoAl-LDH. Reprinted with permission from Ref. [85]. Copyright 2018, Wiley VCH.
Fig. 8. Synthetic strategy, structure characterizations and electrocatalytic activities for MoS2-LDH composite. (a-d) NiCo-LDH@MoS2. Reprinted with permission from Ref. [99]. Copyright 2017, Cell Press. (e-h) NiFe-LDH@MoS2. Reprinted with permission from Ref. [100]. Copyright 2018, American Chemical Society. (i and j) Comparison between MoS2/G, NiFe-LDH/G and MoS2/NiFe-LDH. Reprinted with permission from Ref. [70]. Copyright 2019, American Chemical Society.
Fig. 9. Structure characterizations and electrocatalytic activities for MXenes@LDH nanohybrids. (a) SEM image of integrated Ti3C2@FeNi-LDH electrode. (b,c) XPS spectra of Ni 2p and Fe 2p for Ti3C2@FeNi-LDHs. (d-f) Electrocatalytic activity and stability for Ti3C2@FeNi-LDH. (a-f) Reprinted with permission from Ref. [66]. Copyright 2018, Elsevier. (g-j) The synthesis strategy, construction and overall oxygen electrocatalysis performance for FeNi-LDH@V2C. (g-j) Reprinted with permission from Ref. [123] Copyright 2021, Elsevier.
Fig. 10. Structure and electrocatalytic activities of cMOF/LDH hybrids. (a) Schematic illustration showing construction for cMOF/LDH hybrids. (b) TEM image at the interface of cMOF/LDH-48. (c-j) Electrocatalytic performance of cMOF/LDH hybrids. (k) XRD pattern of cMOF/LDH-48 after OER testing. Reprinted with permission from Ref. [131] Copyright 2021, Wiley VCH.
Fig. 11. Structure and electrocatalytic activities of N,S-rGO/WSe2/NiFe-LDH hybrids. (a) Schematic illustration showing construction for N,S-rGO/WSe2/NiFe-LDH hybrids. (b,c) SEM image and HRTEM image for N,S-rGO/WSe2/NiFe-LDH. (d-i) Electrocatalytic performance of N,S-rGO/WSe2/NiFe-LDH hybrids. Reprinted with permission from Ref. [132]. Copyright 2017, the American Chemical Society.
Fig. 12. (a) Schematic diagram of the construction process of Sb-Graphene hybridization. Reprinted with permission from Ref. [136]. Copyright 2017, Wiley VCH. (b) The characterization and HER performance for metal free COF. Reprinted with permission from Ref. [137]. Copyright 2018, Wiley VCH.
Catalyst | Preparation methods | Performance | Ref. | |
---|---|---|---|---|
OER | HER | |||
NiFe-LDH/r-Go | Hydro/solvothermal | 0.21V@10 mA cm-2 | unknown | [ |
NiFe-LDH/DG | In situ hydrothermal | 0.21V@10 mA cm-2 | 0.115V@20 mA cm-2 | [ |
FeCo-LDH/Graphdiyne | Electrostatic flocculation | 0.216V@10 mA cm-2 | 0.043V@10 mA cm-2 | [ |
NiFe-LDH/g-C3N4 | Electrostatic self-assemble | 0.288V@10 mA cm-2 | 0.406V@10 mA cm-2 | [ |
NiFe-LDH/Ti3C2 | Hydro/solvothermal | 0.27V@10 mA cm-2 | unknown | [ |
NiFePS3-LDH/Ti3C2 | Electrostatic self-assemble | 0.282V@10 mA cm-2 | 0.196V@10 mA cm-2 | [ |
NiFe-LDH/V2C | In situ distorting | 0.25V@10 mA cm-2 | unknown | [ |
NiCo-LDH/MoS2 | Hydro/solvothermal | unknown | 0.078V@10 mA cm-2 | [ |
NiFe-LDH/MoS2 | In situ hydrothermal | 0.156V@10 mA cm-2 | 0.11V@10 mA cm-2 | [ |
NiFe-LDH/Co0.85Se | Electrostatic self-assemble | 1.5V@150 mA cm-2 | unknown | [ |
CoFe-LDH@NiFe-LDH | Electrodeposition | 0.160V@10 mA cm-2 | 0.24V@10 mA cm-2 | [ |
Table 1 Summary of electrocatalytic performance of most-active hybrid LDH materials for overall water splitting.
Catalyst | Preparation methods | Performance | Ref. | |
---|---|---|---|---|
OER | HER | |||
NiFe-LDH/r-Go | Hydro/solvothermal | 0.21V@10 mA cm-2 | unknown | [ |
NiFe-LDH/DG | In situ hydrothermal | 0.21V@10 mA cm-2 | 0.115V@20 mA cm-2 | [ |
FeCo-LDH/Graphdiyne | Electrostatic flocculation | 0.216V@10 mA cm-2 | 0.043V@10 mA cm-2 | [ |
NiFe-LDH/g-C3N4 | Electrostatic self-assemble | 0.288V@10 mA cm-2 | 0.406V@10 mA cm-2 | [ |
NiFe-LDH/Ti3C2 | Hydro/solvothermal | 0.27V@10 mA cm-2 | unknown | [ |
NiFePS3-LDH/Ti3C2 | Electrostatic self-assemble | 0.282V@10 mA cm-2 | 0.196V@10 mA cm-2 | [ |
NiFe-LDH/V2C | In situ distorting | 0.25V@10 mA cm-2 | unknown | [ |
NiCo-LDH/MoS2 | Hydro/solvothermal | unknown | 0.078V@10 mA cm-2 | [ |
NiFe-LDH/MoS2 | In situ hydrothermal | 0.156V@10 mA cm-2 | 0.11V@10 mA cm-2 | [ |
NiFe-LDH/Co0.85Se | Electrostatic self-assemble | 1.5V@150 mA cm-2 | unknown | [ |
CoFe-LDH@NiFe-LDH | Electrodeposition | 0.160V@10 mA cm-2 | 0.24V@10 mA cm-2 | [ |
|
[1] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[2] | 尹春, 杨甫林, 王书莉, 冯立纲. 异质结构NiSe2/MoSe2用于高效尿素辅助电解水制氢[J]. 催化学报, 2023, 51(8): 225-236. |
[3] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[4] | 杜乘风, 胡尔海, 余泓, 颜清宇. 二维电催化剂的局域电子调控策略[J]. 催化学报, 2023, 48(5): 1-14. |
[5] | 张平, 陈浩, 陈林, 熊鹰, 孙子其, 杨浩宇, 付莹珂, 张亚萍, 廖婷, 李斐. 基于NiZn层状双金属氢氧化物制备高效电催化CO2还原的原子分散Ni-N-C催化剂[J]. 催化学报, 2023, 45(2): 152-161. |
[6] | Diab khalafallah, 张运祥, 王昊, Jong-Min Lee, 张勤芳. 联产混合电解水策略实现节能电化学制氢的最新进展[J]. 催化学报, 2023, 55(12): 44-115. |
[7] | 杨竣皓, 安露露, 王双, 张辰浩, 罗官宇, 陈应泉, 杨会颖, 王得丽. 层状双氢氧化物基电解水催化剂的缺陷工程调控策略[J]. 催化学报, 2023, 55(12): 116-136. |
[8] | 谢起贤, 任丹, 柏力晨, 格日乐, 周雯慧, 白璐, 谢微, 王军虎, Michael Grätzel, 罗景山. 镍铁层状双金属氢氧化物在不同pH电解液体系中的析氧反应[J]. 催化学报, 2023, 44(1): 127-138. |
[9] | 杨辉, 代凯, 张金锋, Graham Dawson. 无机-有机杂化光催化剂: 合成、机理及应用[J]. 催化学报, 2022, 43(8): 2111-2140. |
[10] | 张艳飞, 王洪, 刘䶮, 李灿. 有机-无机杂化钙钛矿基光催化剂用于可见光催化芳香族溴化反应并联产氢气[J]. 催化学报, 2022, 43(7): 1805-1811. |
[11] | 刘储浩, 吴悦, 方锦杰, 余坷, 李慧, 贺文君, 张永臻, 柳守杰, 陈郑, 董京, 陈晨. 氮掺杂碳催化剂在高效电化学CO2还原中的协同效应[J]. 催化学报, 2022, 43(7): 1697-1702. |
[12] | 孙晓旭, 朱晓蓉, 王彧, 李亚飞. 1T′-MoTe2单层: 一种有前景的电催化合成双氧水的催化剂[J]. 催化学报, 2022, 43(6): 1520-1526. |
[13] | 丁钰, 曹凯文, 贺嘉伟, 李富民, 黄昊, 陈沛, 陈煜. 氮掺杂石墨烯气凝胶负载的钌纳米晶用于宽pH范围析氢反应[J]. 催化学报, 2022, 43(6): 1535-1543. |
[14] | 韩鹏宇, 姚娜, 左为, 罗威. 硼掺杂诱导d-p轨道杂化调节镍电子结构实现高效催化碱性氢氧化反应[J]. 催化学报, 2022, 43(6): 1527-1534. |
[15] | 钟威, 许家超, 王苹, 朱必成, 范佳杰, 余火根. 新型核壳Ag@AgSex纳米粒子析氢助剂: 原位表面硒化以提升TiO2的光催化产氢活性[J]. 催化学报, 2022, 43(4): 1074-1083. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||