催化学报 ›› 2022, Vol. 43 ›› Issue (6): 1380-1398.DOI: 10.1016/S1872-2067(21)63987-6

• 综述 • 上一篇    下一篇

二维水滑石复合材料用于电解水的研究进展

成金玲, 王定胜*()   

  1. 清华大学化学系, 北京100084
  • 收稿日期:2021-10-01 接受日期:2021-10-01 出版日期:2022-06-18 发布日期:2022-04-14
  • 通讯作者: 王定胜
  • 基金资助:
    国家重点研发计划(2018YFA0702003);国家自然科学基金(21890383);国家自然科学基金(21871159);广东省科学技术重点项目(2020B010188002)

2D materials modulating layered double hydroxides for electrocatalytic water splitting

Jinling Cheng, Dingsheng Wang*()   

  1. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2021-10-01 Accepted:2021-10-01 Online:2022-06-18 Published:2022-04-14
  • Contact: Dingsheng Wang
  • Supported by:
    National Key R&D Program of China(2018YFA0702003);National Natural Science Foundation of China(21890383);National Natural Science Foundation of China(21871159);Science and Technology Key Project of Guangdong Province of China(2020B010188002)

摘要:

催化在化学研究和相关工业活动中起着关键作用. 气候变化、环境问题和能源安全等因素促使人们寻求清洁和可再生能源的想法更加迫切. 电解水直接将H2O分解为H2和O2, 对于氢能的清洁生产和促进低碳经济的发展具有重要意义. 电解水反应由发生在阴极的析氢反应(HER)与发生在阳极的析氧反应(OER)构成. 其中, HER涉及两个电子的转移, 而OER涉及多个质子和电子转移, 被认为是整个水分解过程的限速步骤, 而且其反应动力学缓慢严重限制了水分解的整体效率.
近年来, 开发高效催化剂加速两个电极上的电解反应动力学, 无论从基础研究还是实际应用都引起了人们的极大兴趣. 过渡金属层状水滑石(LDHs)类材料已被证明是最有效的OER材料之一, 但仍存在导电性低、析氢反应动力学缓慢等问题, 极大地抑制了电解水效率. 为了解决这个难题, 研究者们尝试了大量的改进方法, 包括掺杂调控、插层调谐和缺陷工程等. 受石墨烯发现的启发, 二维材料, 如石墨氮化碳、过渡金属硫化合物、过渡金属氧化物、氢氧化物和二维过渡金属碳(氮)化物, 已经在各个研究领域得到广泛应用, 特别是其独特的结构和电子性能, 为电化学能量转换/存储应用开辟了新的方向.
本文总结了LDHs复合其它二维材料应用于电解水的最新进展, 重点介绍了材料的设计、合成、表征、活性和稳定性. 由于前期的综述主要集中在增强LDHs的OER性能, 包括LDHs纳米片的调制组成、LDHs的配位环境以及与其它材料的杂化等, 本文着重于介绍HER/OER双功能电解水的应用. 归纳了LDH材料本身的结构特性及影响电极催化性能的关键吸附中间物种. 根据不同二维材料, 即二维碳材料、过渡金属硫化物、二维过渡金属碳化物以及其它化合物进行分类讨论, 总结了相关电解水催化研究现状, 并针对不同类型的复合电解水催化剂目前的发展情况, 提出了它们各自存在的问题. 值得注意的是, 基于LDHs的复合材料被认为是一种最具潜力的双功能电催化剂. 该种复合材料可以在同一电解质中同时驱动HER和OER两个反应, 这对加快整体水分解过程的反应速率并降低活化能至关重要. 本文还对电解水中双功能LDHs杂化材料的设计、调变以及实际应用中面临的挑战进行了展望.

关键词: 双金属氢氧化物, 二维材料, 杂化, 协同作用, 电解水

Abstract:

Exploring highly efficient electrochemical water splitting catalysts has recently attracted extensive research interest from both fundamental researches and practical applications. Transition metal-based layered double hydroxides (LDHs) have been proved to be one of the most efficient materials for oxygen evolution reaction (OER), however, still suffered from low conductivity and sluggish kinetics for hydrogen evolution reaction (HER), which largely inhibited the overall water splitting efficiency. To address this dilemma, enormous approaches including doping regulation, intercalation tuning and defect engineering are therefore rationally designed and developed. Herein, we focus on the recent exciting progress of LDHs hybridization with other two-dimensional (2D) materials for water splitting reactions, not barely for enhancing OER efficiency but also for boosting HER activity. Particularly, the structural features, morphologies, charge transfer and synergistic effects for the heterostructure/heterointerface that influence the electrocatalytic performance are discussed in details. The hybrid 2D building blocks not only serve as additional conductivity and structural supported but also promote electron transfer at the interfaces and further enhance the electrocatalytic performance. The construction and application of the nanohybrid materials will guide a new direction in developing multifunctional materials based on LDHs, which will contribute to energy conversion and storage.

Key words: Layered double hydroxide, 2D materials, Hybridization, Synergistic effect, Electrocatalytic water splitting