催化学报 ›› 2022, Vol. 43 ›› Issue (8): 2111-2140.DOI: 10.1016/S1872-2067(22)64096-8
杨辉a, 代凯a,*(), 张金锋a,#(
), Graham Dawsonb
收稿日期:
2021-12-24
接受日期:
2022-03-27
出版日期:
2022-08-18
发布日期:
2022-06-20
通讯作者:
代凯,张金锋
基金资助:
Hui Yanga, Kai Daia,*(), Jinfeng Zhanga,#(
), Graham Dawsonb
Received:
2021-12-24
Accepted:
2022-03-27
Online:
2022-08-18
Published:
2022-06-20
Contact:
Kai Dai, Jinfeng Zhang
About author:
Kai Dai (Huaibei Normal University) received his B.A. degree from Anhui University (China) in 2002, and Ph.D. degree from Shanghai University (China) in 2007. He worked in Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences at 2007, and then in Huaibei Normal University at 2010. He is Distinguished Young Scholars Recipients of Natural Science Foundation of Anhui Province (2018) and head of Anhui Provincial Teaching Team (2019). His research interests mainly focus on semiconductor photocatalysis. He has published more than 120 peer-reviewed papers, including 6 hot paper of ESI and 19 highly cited papers of ESI.Supported by:
摘要:
由无机与有机组分组成的无机-有机杂化材料因其优异的性能及良好的物理化学性质在光催化领域得到了广泛的关注. 目前, 已经开发的单相光催化剂有很多种, 但其很难同时满足宽的光激发范围以及高的光吸收能力和强的氧化还原能力等需求, 因此, 科研人员开发了很多方法去解决上述问题,主要包括以下两大类. 第一类, 修饰光催化剂扩大光激发范围以及增强可见光吸收. 例如构建固溶体、引入表面缺陷、杂质掺杂、染料敏化和表面等离子体共振等策略. 第二类, 构建半导体异质结, 通过界面处的协同作用有效促进光生电子空穴对的转移与分离. 例如type II型、直接Z型以及S型异质结等.
有机成分与无机成分的杂化是有效解决上述问题的方法之一. 大部分有机材料具有成本低、吸光系数高以及比表面积大等优点; 但低的强度以及宽的带隙限制了有机材料在光催化上的应用. 而大部分无机材料具有高强度、窄带隙以及良好的光学性能. 但低韧性和较差的分散性限制了无机材料在光催化上的应用. 无机-有机杂化材料不仅保留了无机与有机组分的原有性质, 而且界面处组分之间的协同作用会产生新的性质, 如高的载流子传输能力和高的光吸收能力等. 无机-有机杂化材料是多相材料, 其中的一相是纳米材料, 从而保留了纳米材料的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应; 并且纳米结构的光催化剂相对于体相材料而言, 具有比表面积高、载流子输运距离短和电子结构可调等优势. 无机-有机杂化光催化材料既保留了高的光吸收能力, 又保留了高氧化性的空穴与高还原性的电子, 因而在光催化领域的应用越来越广泛.
本文综述了无机-有机杂化材料的合成、机理以及在光催化领域的应用. 首先, 介绍了无机-有机光催化剂的作用、优缺点以及设计原则, 讨论了自上而下和自下而上制备无机-有机杂化材料的方法, 为设计杂化材料提供思路. 其次, 对有机组分与无机组分的相互作用力进行分类讨论. 再次, 阐述了无机-有机杂化材料的优势, 讨论了进一步改进无机-有机光催化剂的方法. 最后, 总结了无机-有机杂化材料在光催化领域面临的问题与挑战, 并对未来发展进行了展望.
杨辉, 代凯, 张金锋, Graham Dawson. 无机-有机杂化光催化剂: 合成、机理及应用[J]. 催化学报, 2022, 43(8): 2111-2140.
Hui Yang, Kai Dai, Jinfeng Zhang, Graham Dawson. Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications[J]. Chinese Journal of Catalysis, 2022, 43(8): 2111-2140.
Fig. 2. Statistics of publications and their citations with topics including “inorganic-organic hybrid materials” and “photocatalytic” based on a Web of Science search conducted on January 23, 2022.
Fig. 5. (a) Synthesis of Bi2WO6 with different morphologies using PVP as an inducer. (b) Different molar ratios of BDC and Cr(NO3)3·9H2O change the size of MIL-101(Cr)-Ag. (a) Reprinted with permission from Ref. [63]. Copyright 2016, Elsevier. (b) Reprinted with permission from Ref. [60]. Copyright 2019, American Chemical Society.
Fig. 6. (a) UV-vis DRS curves of the VO-BiOBr nanosheets and BiOBr nanoplates. The inset shows the color comparison of the VO-BiOBr nanosheets (left) and BiOBr nanoplates (right). (b) Corresponding Tauc ((Ahν)1/2 versus hν) plots, valence-band XPS spectra (c) and band alignments (d) of the VO-BiOBr nanosheets and BiOBr nanoplates. (e) Schematic of the photocatalytic ammonia synthesis process on the VO-BiOBr nanosheets and BiOBr nanoplates. Reprinted with permission from Ref. [71]. Copyright 2018, American Chemical Society.
Fig. 7. Schematic of CdS nanomaterials prepared using different inducers and CdS-PD-assisted photocatalytic reduction of CO2. Reprinted with permission from Ref. [75]. Copyright 2018, American Chemical Society.
Preparation method | Photocatalyst | Ref. |
---|---|---|
Epitaxial growth | Fe3O4@UiO-66-NH2 | [ |
HZSM-5@UIO-66-NH2/Pd | [ | |
CdS-TiO2@g-C3N4 | [ | |
Au@Pd@MOF-74 | [ | |
MAF-7 | [ | |
Mechanical grinding | MoNi@MoO2-8%/g-C3N4 | [ |
Perylenetetracarboxylic acid diimide polymer@TiO2 | [ | |
Co2ZrO5/g-C3N4 | [ | |
WOx/Ni-g-C3N4 | [ | |
Pyrolysis | Co nanoparticles decorated with nitrogen-doped carbon nanotubes | [ |
Cellulose-derived carbon nanofibers/BiOBr | [ | |
N-C-TiO2/C | [ | |
Fe(OH)3@nickel PDI | [ | |
WC1‒x/g-C3N4 | [ | |
Chemical intercalation | Ethylenediamine-intercalated quasimonolayer BP | [ |
Bi2O3-bentonite | [ | |
Co3O4/C3N4 | [ | |
Electrospray | Zn/PbO/PC-Zn/MAPbBr3 | [ |
Hydrothermal/solvothermal | CdS/polybenzothiadiazole (B-BT-1,4-E, noted as BE) | [ |
CdS/DETA | [ | |
Carbonized polymer dots/Bi4O5Br2 | [ | |
WO3/CdS-DETA | [ | |
Zn3In2S6/fluorinated polymeric carbon nitride | [ | |
Pt/CdS-DETA | [ | |
CdS-NiPc | [ | |
ZnS(propylamine) | [ | |
Cu2S/CdS-DETA | [ | |
Ag/AgCl/NH2-UiO-66 | [ | |
Au@Void@g‑C3N4/SnS | [ | |
BiOI/g‐C3N4 | [ | |
g-C3N4/N-doped carbon dots/MoS2 | [ | |
NH2-MIL-125 (Ti)@Bi2MoO6 | [ | |
Bi2WO6/g-C3N4 | [ | |
ZnIn2S4@PCN-224 (a MOF composed of porphyrin linkers and Zr clusters) | [ | |
g-C3N4/CdS | [ | |
g-C3N4/ZnIn2S4 | [ | |
MASnI3/TiO2 (MA represents CH3NH3+) | [ | |
Evaporation-solvent assembly | TiO2/g-C3N4 | [ |
MIL-125 | [ | |
WO3/g-C3N4 | [ | |
Nd2O3/g-C3N4 | [ | |
SnO2/Polyaniline | [ | |
Sol-gel | Aluminum-doped zinc oxide-polyaniline | [ |
g-C3N4/N-doped-LaTiO3 | [ | |
calixarene dye (HO-TPA)/TiO2 | [ | |
Template | MIL-125(Ti) | [ |
TB-TiO2@MFA | [ | |
SiO2/g-C3N4 | [ | |
pg-C3N4/Co3O4/CoS | [ | |
AgCl/g-C3N5 | [ | |
Bi5O7I/g-C3N4 | [ | |
ZnO@zeolitic imidazolate frameworks-8 | [ | |
MOF-derived bimetallic Fe-Ni-P nanotubes | [ | |
MIL-125/TiO2@SiO2 | [ | |
LBL self-assembly | Ag-AgCl/WO3/g-C3N4 nanoparticles on a polydopamine (PDA)-modified melamine sponge | [ |
MoS2/ZIF-8 | [ | |
Polypyrrole/CdS | [ | |
Poly(styrene sulfonate) sodium salt/TiO2 | [ | |
BiOCl/g-C3N4/kaolinite | [ | |
TiO2/poly(sodium styrenesulfonate) | [ |
Table 1 Overview of synthetic methods for preparing inorganic-organic photocatalysts.
Preparation method | Photocatalyst | Ref. |
---|---|---|
Epitaxial growth | Fe3O4@UiO-66-NH2 | [ |
HZSM-5@UIO-66-NH2/Pd | [ | |
CdS-TiO2@g-C3N4 | [ | |
Au@Pd@MOF-74 | [ | |
MAF-7 | [ | |
Mechanical grinding | MoNi@MoO2-8%/g-C3N4 | [ |
Perylenetetracarboxylic acid diimide polymer@TiO2 | [ | |
Co2ZrO5/g-C3N4 | [ | |
WOx/Ni-g-C3N4 | [ | |
Pyrolysis | Co nanoparticles decorated with nitrogen-doped carbon nanotubes | [ |
Cellulose-derived carbon nanofibers/BiOBr | [ | |
N-C-TiO2/C | [ | |
Fe(OH)3@nickel PDI | [ | |
WC1‒x/g-C3N4 | [ | |
Chemical intercalation | Ethylenediamine-intercalated quasimonolayer BP | [ |
Bi2O3-bentonite | [ | |
Co3O4/C3N4 | [ | |
Electrospray | Zn/PbO/PC-Zn/MAPbBr3 | [ |
Hydrothermal/solvothermal | CdS/polybenzothiadiazole (B-BT-1,4-E, noted as BE) | [ |
CdS/DETA | [ | |
Carbonized polymer dots/Bi4O5Br2 | [ | |
WO3/CdS-DETA | [ | |
Zn3In2S6/fluorinated polymeric carbon nitride | [ | |
Pt/CdS-DETA | [ | |
CdS-NiPc | [ | |
ZnS(propylamine) | [ | |
Cu2S/CdS-DETA | [ | |
Ag/AgCl/NH2-UiO-66 | [ | |
Au@Void@g‑C3N4/SnS | [ | |
BiOI/g‐C3N4 | [ | |
g-C3N4/N-doped carbon dots/MoS2 | [ | |
NH2-MIL-125 (Ti)@Bi2MoO6 | [ | |
Bi2WO6/g-C3N4 | [ | |
ZnIn2S4@PCN-224 (a MOF composed of porphyrin linkers and Zr clusters) | [ | |
g-C3N4/CdS | [ | |
g-C3N4/ZnIn2S4 | [ | |
MASnI3/TiO2 (MA represents CH3NH3+) | [ | |
Evaporation-solvent assembly | TiO2/g-C3N4 | [ |
MIL-125 | [ | |
WO3/g-C3N4 | [ | |
Nd2O3/g-C3N4 | [ | |
SnO2/Polyaniline | [ | |
Sol-gel | Aluminum-doped zinc oxide-polyaniline | [ |
g-C3N4/N-doped-LaTiO3 | [ | |
calixarene dye (HO-TPA)/TiO2 | [ | |
Template | MIL-125(Ti) | [ |
TB-TiO2@MFA | [ | |
SiO2/g-C3N4 | [ | |
pg-C3N4/Co3O4/CoS | [ | |
AgCl/g-C3N5 | [ | |
Bi5O7I/g-C3N4 | [ | |
ZnO@zeolitic imidazolate frameworks-8 | [ | |
MOF-derived bimetallic Fe-Ni-P nanotubes | [ | |
MIL-125/TiO2@SiO2 | [ | |
LBL self-assembly | Ag-AgCl/WO3/g-C3N4 nanoparticles on a polydopamine (PDA)-modified melamine sponge | [ |
MoS2/ZIF-8 | [ | |
Polypyrrole/CdS | [ | |
Poly(styrene sulfonate) sodium salt/TiO2 | [ | |
BiOCl/g-C3N4/kaolinite | [ | |
TiO2/poly(sodium styrenesulfonate) | [ |
Fig. 11. (a) MOF structure of the hydrophilic and hydrophobic layers of Zn grown on the PES membrane. (b) Schematic of the synthetic pathway of Ni-CPNS/CdS heterostructure. (c) Schematic of the synthesis path of PVAD-g-TiO2 prepared via pyrolysis. (d) Schematic of inorganic-organic (top arrow) and columnar inorganic (bottom arrow) materials prepared through the intercalation of IPC-1P precursor. (e) Synthesis and structure principle of Zn/PbO/PC-Zn/MAPbBr3 heterojunction materials using the electrospray method. (a) Reprinted with permission from Ref. [93]. Copyright 2021, Elsevier. (b) Reprinted with permission from Ref. [94]. Copyright 2019, The Royal Society of Chemistry. (c) Reprinted with permission from Ref. [95]. Copyright 2014, American Chemical Society. (d) Reprinted with permission from Ref. [96]. Copyright 2014, American Chemical Society. (e) Reprinted with permission from Ref. [97]. Copyright 2021, John Wiley and Sons.
Fig. 12. (a) Schematic of the synthesis path of ZnxCd1-xSe-DETA and NiS/Zn0.5Cd0.5Se-DETA using the solvothermal method. (b) Multications: α,α'-bis(4-cyano-l-pyridino)-o-xylene dibromide [O-CN·Br2], α,α'-bis(4-cyano-l-pyridino)-m-xylene dibromide [M-CN·Br2], α,α'-bis(4-cyano-l-pyridino)-p-xylene dibromide [P-CNP·Br2], and 1,2,4,5-four[(4-cyanopyridyl)-N-methylene] benzene) [Multi-CN·Br4]. (c) Structure and the optimized structure of cone-calixarene-based dye Calix-3. (d) Illustration of the formation process of hierarchically porous titanium phosphonates using dual templates. (e) LBL self-assembly construction process of coating. (a) Reprinted with permission from Ref. [108]. Copyright 2020, Elsevier. (b) Reprinted with permission from Ref. [109]. Copyright 2020, Elsevier. (c) Reprinted with permission from Ref. [110]. Copyright 2019, The Royal Society of Chemistry. (d) Reprinted with permission from Ref. [111]. Copyright 2018, John Wiley and Sons. (e) Reprinted with permission from Ref. [112]. Copyright 2019, American Chemical Society.
Bond | Photocatalyst | Ref. |
---|---|---|
Electrostatic interactions | CdS/mercaptopropionic acid (MPA) | [ |
MOF (Ni3HITP2)/rGO | [ | |
ZnIn2S4/g-C3N4 | [ | |
g-C3N4/Au/BiVO4 | [ | |
g-C3N4/ZnO | [ | |
BaSnO3/poly(dimethyl- Diallylammonium chloride)/Ti3C2Tx | [ | |
Triptycene covalent polymer@CdS | [ | |
Ru@Cu-HHTP | [ | |
Van der Waals force | Geopolymer spheres/CdS | [ |
Co-rGO/C3N4 | [ | |
PDINH/Bi2WO6 | [ | |
FLI2/CNNS | [ | |
Hydrogen bond | In2S3@MIL-125(Ti) | [ |
Regenerated cellulose/TiO2 | [ | |
polyaniline-titanium dioxide (PANI)/TiO2 | [ | |
PDINH/TiO2 | [ | |
Ionic bond | CNFs/ZnIn2S4 | [ |
Mn-adsorbed g-C3N4 | [ | |
Barium-embedded g-C3N4 | [ | |
Covalent bond | ZnIn2S4/g-C3N4 | [ |
COF-318-TiO2 | [ | |
C3N4/CoPx | [ | |
MIL-53(Fe)/PDI | [ | |
Co-phosphide/p-C3N4 | [ | |
O-g-C3N4/TiO2 | [ |
Table 2 Overview of the bonding types of inorganic-organic photocatalysts.
Bond | Photocatalyst | Ref. |
---|---|---|
Electrostatic interactions | CdS/mercaptopropionic acid (MPA) | [ |
MOF (Ni3HITP2)/rGO | [ | |
ZnIn2S4/g-C3N4 | [ | |
g-C3N4/Au/BiVO4 | [ | |
g-C3N4/ZnO | [ | |
BaSnO3/poly(dimethyl- Diallylammonium chloride)/Ti3C2Tx | [ | |
Triptycene covalent polymer@CdS | [ | |
Ru@Cu-HHTP | [ | |
Van der Waals force | Geopolymer spheres/CdS | [ |
Co-rGO/C3N4 | [ | |
PDINH/Bi2WO6 | [ | |
FLI2/CNNS | [ | |
Hydrogen bond | In2S3@MIL-125(Ti) | [ |
Regenerated cellulose/TiO2 | [ | |
polyaniline-titanium dioxide (PANI)/TiO2 | [ | |
PDINH/TiO2 | [ | |
Ionic bond | CNFs/ZnIn2S4 | [ |
Mn-adsorbed g-C3N4 | [ | |
Barium-embedded g-C3N4 | [ | |
Covalent bond | ZnIn2S4/g-C3N4 | [ |
COF-318-TiO2 | [ | |
C3N4/CoPx | [ | |
MIL-53(Fe)/PDI | [ | |
Co-phosphide/p-C3N4 | [ | |
O-g-C3N4/TiO2 | [ |
Fig. 14. (a) Schematic of the synthesis path of EDTA-mediated Cd0.5Zn0.5S@halloysite nanotubes. (b) Schematic of the processes of preparing the FLI2/CNNs-X composite. (c) Schematic of the photocatalytic reaction mechanism of PDINH/TiO2 under simulated sunlight. (d) Diagram of the synthesis path of CNFs/ZnIn2S4. (e) Schematic of the preparation of COF-318-SCs via the condensation of COF-318 and semiconductor materials. (a) Reprinted with permission from Ref. [173]. Copyright 2019, John Wiley and Sons. (b) Reprinted with permission from Ref. [174]. Copyright 2022, Elsevier. (c) Reprinted with permission from Ref. [175]. Copyright 2021, Elsevier. (d) Reprinted with permission from Ref. [176]. Copyright 2019, Elsevier. (e) Reprinted with permission from Ref. [177]. Copyright 2020, John Wiley and Sons.
Application Type | Photocatalyst | Photocatalytic target | Efficiency | Ref. |
---|---|---|---|---|
Photocatalytic degradation of organic pollutants | 5% Citric acid/CeO2 | 25 mg L-1 glyphosate | 100% in 30 min | [ |
30% Perylene imide/Bi2WO6 | 50 mL of 10 ppm bisphenol A | 100% in 180 min | [ | |
[BHMTA] [Cu2I3]n | 20 mg L-1 tetracycline | 96.2% in 180 min | [ | |
Ag3PO4/PDI organic supermolecules | 20 mg L-1 tetracycline hydrochloride | 82.8% in 8 min | [ | |
H12SubPcB-OPhCOPh/TiO2 | 20 mg L-1 tetracycline | 100% in 180 min | [ | |
30% WO3@Cu@PDI | 10 mg L-1 tetracycline hydrochloride | 75% in 15 min | [ | |
Tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 | 20 mg L-1 tetracycline hydrochloride | 85.7% in 15 min | [ | |
PW12/CN@Bi2WO6 | 30 mg L-1 tetracycline hydrochloride | 97.5% in 100 min | [ | |
ZnSe/polyaniline | 10 mg L-1 methylene blue (MB) | 90%-100% in 180 min | [ | |
Photocatalytic reduction of heavy metals | PANI@SnS2@carbon | 80 mg Cr(VI) | 100% in 20 min | [ |
MIL-53(Fe) | 1.0 g L-1 Cu-EDTA | 91% in 60 min | [ | |
TiO2-WO3-PANI | 10 mg L-1 Cr(VI) | 67.62% in 60 min | [ | |
PVP/Bi2S3 | Cr(VI) | 95.2% in 5 min | [ | |
Polyaniline/Zn3In2S6 | 50 mg L-1 Cr(VI) | 100% in 20 min | [ | |
PDPB-ZnO | 50 mg L-1 Cr(VI) | 99.8% in 90 min | [ | |
PW12/CN@Bi2WO6 | 20 mg L-1 Cr(VI) | 98.7% in 90 min | [ | |
Photocatalytic hydrogen production | ZnIn2S4/TCP | H2O | 1432.8 μmol h-1 g-1 H2 | [ |
Titanium-phosphonate MOF | H2O | 1260 μmol h-1 g-1 H2 | [ | |
Pyrene-benzene polymer/MoS2 | H2O | 27 μmol h-1 H2 | [ | |
CdS@TCP | H2O | 104.51 μmol h-1 g-1 H2 | [ | |
Polytriptycene@CdS | H2O | 9480 μmol h-1 g-1 H2 | [ | |
Polyaniline/ZnO | H2O | 9.4 mmol h-1 g-1 H2 | [ | |
Photocatalytic carbon dioxide reduction | Graphdiyne/Bi2WO6 | CO2 and H2O | 2.13 mmol h-1 g-1 CH3OH 0.23 mmol h-1 g-1 CH4 | [ |
L-cysteine/In4SnS8 | CO2 and H2O | 10.70 μL h-1 CH4 9.39 μL h-1 CO | [ | |
Cu-HHTP | CO2 | 130 mmol h-1 g-1 CO | [ | |
Zr(IV)-MOF BUT-110-65%-Co | CO2 and H2O | 70.8 μmol h-1 g-1 CH4 9.0 μmol h-1 g-1 CO | [ | |
InVO4/g-C3N4 | CO2 and H2O | 69.8 μmol h-1 g-1 CO | [ | |
UiO-66-NH2-LV | CO2 | 35 μmol h-1 g-1 CO | [ | |
Imidazolium-modified ZnSe | CO2 | 2.4 mmol h-1 g-1 CO | [ | |
Pd-hypercrosslinked polymers-TiO2 | CO2 and H2O | 237.4 μmol h-1 g-1 CH4 | [ | |
SnNb2O6/CdSe-DETA | CO2 and H2O | 36.16 μmol h-1 g-1 CO | [ | |
Photocatalytic sterilization | TiO2/chlorophyll | Escherichia coli | sterilization (2.94 × 107 cfu cm-2 180 min) | [ |
CeO2/polymeric carbon nitride | staphylococcus aureus (S. aureus) | 88.1% sterilization | [ | |
P-doped MoS2/g-C3N4 | escherichia coli (E. coli) | 99.99% sterilization | [ | |
α-Fe2O3/g-C3N4 | Escherichia coli | sterilization (7 log10 cfu mL-1 in 120 min) | [ | |
Sn3O4/perylene-3,4,9,10-tetracarboxylic diimide | staphylococcus aureus and escherichia coli | 94% and 92% sterilization efficiencies for S. aureus and E. coli, respectively | [ | |
Photocatalytic nitrogen fixation | Al-PMOF (porphyrin-based metal-organic framework) | N2 | 127 μg h-1 g-1 NH3 | [ |
NH2-MIL-125(Ti) | N2 | 12.3 μmol h-1 g-1 NH3 | [ | |
Polyacrylonitrile/BiOBr-Cl | N2 | 234.4 μmol h-1 g-1 NH3 | [ | |
MIL-101(Fe) | N2 | 50.355 μmol h-1 g-1 NH3 | [ | |
Zn/PbO/PC-Zn/MAPbBr3 | N2 | 46.87 μmol h-1 g-1 NH3 | [ |
Table 3 Overview of the catalytic efficiency of inorganic-organic photocatalysts.
Application Type | Photocatalyst | Photocatalytic target | Efficiency | Ref. |
---|---|---|---|---|
Photocatalytic degradation of organic pollutants | 5% Citric acid/CeO2 | 25 mg L-1 glyphosate | 100% in 30 min | [ |
30% Perylene imide/Bi2WO6 | 50 mL of 10 ppm bisphenol A | 100% in 180 min | [ | |
[BHMTA] [Cu2I3]n | 20 mg L-1 tetracycline | 96.2% in 180 min | [ | |
Ag3PO4/PDI organic supermolecules | 20 mg L-1 tetracycline hydrochloride | 82.8% in 8 min | [ | |
H12SubPcB-OPhCOPh/TiO2 | 20 mg L-1 tetracycline | 100% in 180 min | [ | |
30% WO3@Cu@PDI | 10 mg L-1 tetracycline hydrochloride | 75% in 15 min | [ | |
Tetra (4-carboxyphenyl) porphyrin/Bi2MoO6 | 20 mg L-1 tetracycline hydrochloride | 85.7% in 15 min | [ | |
PW12/CN@Bi2WO6 | 30 mg L-1 tetracycline hydrochloride | 97.5% in 100 min | [ | |
ZnSe/polyaniline | 10 mg L-1 methylene blue (MB) | 90%-100% in 180 min | [ | |
Photocatalytic reduction of heavy metals | PANI@SnS2@carbon | 80 mg Cr(VI) | 100% in 20 min | [ |
MIL-53(Fe) | 1.0 g L-1 Cu-EDTA | 91% in 60 min | [ | |
TiO2-WO3-PANI | 10 mg L-1 Cr(VI) | 67.62% in 60 min | [ | |
PVP/Bi2S3 | Cr(VI) | 95.2% in 5 min | [ | |
Polyaniline/Zn3In2S6 | 50 mg L-1 Cr(VI) | 100% in 20 min | [ | |
PDPB-ZnO | 50 mg L-1 Cr(VI) | 99.8% in 90 min | [ | |
PW12/CN@Bi2WO6 | 20 mg L-1 Cr(VI) | 98.7% in 90 min | [ | |
Photocatalytic hydrogen production | ZnIn2S4/TCP | H2O | 1432.8 μmol h-1 g-1 H2 | [ |
Titanium-phosphonate MOF | H2O | 1260 μmol h-1 g-1 H2 | [ | |
Pyrene-benzene polymer/MoS2 | H2O | 27 μmol h-1 H2 | [ | |
CdS@TCP | H2O | 104.51 μmol h-1 g-1 H2 | [ | |
Polytriptycene@CdS | H2O | 9480 μmol h-1 g-1 H2 | [ | |
Polyaniline/ZnO | H2O | 9.4 mmol h-1 g-1 H2 | [ | |
Photocatalytic carbon dioxide reduction | Graphdiyne/Bi2WO6 | CO2 and H2O | 2.13 mmol h-1 g-1 CH3OH 0.23 mmol h-1 g-1 CH4 | [ |
L-cysteine/In4SnS8 | CO2 and H2O | 10.70 μL h-1 CH4 9.39 μL h-1 CO | [ | |
Cu-HHTP | CO2 | 130 mmol h-1 g-1 CO | [ | |
Zr(IV)-MOF BUT-110-65%-Co | CO2 and H2O | 70.8 μmol h-1 g-1 CH4 9.0 μmol h-1 g-1 CO | [ | |
InVO4/g-C3N4 | CO2 and H2O | 69.8 μmol h-1 g-1 CO | [ | |
UiO-66-NH2-LV | CO2 | 35 μmol h-1 g-1 CO | [ | |
Imidazolium-modified ZnSe | CO2 | 2.4 mmol h-1 g-1 CO | [ | |
Pd-hypercrosslinked polymers-TiO2 | CO2 and H2O | 237.4 μmol h-1 g-1 CH4 | [ | |
SnNb2O6/CdSe-DETA | CO2 and H2O | 36.16 μmol h-1 g-1 CO | [ | |
Photocatalytic sterilization | TiO2/chlorophyll | Escherichia coli | sterilization (2.94 × 107 cfu cm-2 180 min) | [ |
CeO2/polymeric carbon nitride | staphylococcus aureus (S. aureus) | 88.1% sterilization | [ | |
P-doped MoS2/g-C3N4 | escherichia coli (E. coli) | 99.99% sterilization | [ | |
α-Fe2O3/g-C3N4 | Escherichia coli | sterilization (7 log10 cfu mL-1 in 120 min) | [ | |
Sn3O4/perylene-3,4,9,10-tetracarboxylic diimide | staphylococcus aureus and escherichia coli | 94% and 92% sterilization efficiencies for S. aureus and E. coli, respectively | [ | |
Photocatalytic nitrogen fixation | Al-PMOF (porphyrin-based metal-organic framework) | N2 | 127 μg h-1 g-1 NH3 | [ |
NH2-MIL-125(Ti) | N2 | 12.3 μmol h-1 g-1 NH3 | [ | |
Polyacrylonitrile/BiOBr-Cl | N2 | 234.4 μmol h-1 g-1 NH3 | [ | |
MIL-101(Fe) | N2 | 50.355 μmol h-1 g-1 NH3 | [ | |
Zn/PbO/PC-Zn/MAPbBr3 | N2 | 46.87 μmol h-1 g-1 NH3 | [ |
Fig. 17. Possible photocatalytic mechanism for PMG degradation using citric acid-modified ultrasmall CeO2 NPs. Reprinted with permission from Ref. [245]. Copyright 2021, Elsevier.
Fig. 18. Density functional theory simulation. (a) Band structure of Ag3PO4. Position of the Fermi level is set as 0 eV. (b) PDOS and TDOS of Ag3PO4. (c) Band structure of the Ag3PO4/PDI composite. (d) Simulated electron density difference of the Ag3PO4/PDI composite. (e) Schematic of the formation of an internal electric field. (f) Schematic of carrier migration on Ag3PO4/PDI under the influence of an internal electric field. Reprinted with permission from Ref. [248]. Copyright 2020, Elsevier.
Fig. 19. (a) Photocatalytic activity for Cu-EDTA degradation. (b) XRD patterns of MIL-53(Fe)-13. (c) Schematic of possible degradation mechanisms of Cu-EDTA via MIL-53(Fe) photocatalysis. Reprinted with permission from Ref. [250]. Copyright 2021, Elsevier.
Fig. 20. (a) SEM images of TCP. (b) HRTEM image of ZnIn2S4/TCP. (c) Photocatalytic H2 production of TCP, ZnIn2S4, and ZnIn2S4/TCP composites. (d) Stability tests for photocatalytic H2 evolution over the optimized ZnIn2S4/TCP. (e) Charge transfer over a ZnIn2S4/TCP composite under visible-light irradiation. Reprinted with permission from Ref. [262]. Copyright 2021, American Chemical Society.
Fig. 21. UV-vis DRS (a) and VB-XPS (b) spectra of anatase TiO2 and TiPNW. The inset of (a) shows the corresponding Tauc plots for the bandgap determination. 3D charge density differences for TiPNW (c) and TiPNW-Br (d) with an isovalue of 3 × 10-4 e Å-3, and the corresponding 2D charge density difference mapping inserted with planar-averaged charge density difference and electrostatic potential at the interfaces of TiPNW and TiPNW-Br. Red ball: O, cyan ball: Ti, gray ball: C, violet ball: P, white ball: H, and brown ball: Br. Apparently, the strong electron-donating feature of -OH induces a more pronounced electron transfer from the organophosphonic ligand to the modeled Ti-oxo cluster. Reprinted with permission from Ref. [263]. Copyright 2020, John Wiley and Sons.
Fig. 22. (a) Schematic of self-polymerization processes of dopamine and the structural diagrams of TiO2@PDA composites. (b) Photocatalytic yields of CH4 and CH3OH for pure TiO2 and TiO2@PDA composites (TP1, TP2, TP3, and TP4). (c) Recycling activity of TP3 for photocatalytic CO2 reduction; Schematic illustration of the relative band energy positions of TiO2 and PDA before contact (d), after contact (e) and under irradiation (f) and the S-scheme charge transfer mechanism between TiO2 and PDA under irradiation. Reprinted with permission from Ref. [278]. Copyright 2021, Elsevier.
Fig. 23. Relative free energy profiles for CO2 reduction to CO: rate determination (a) and selectivity determination (b). Reprinted with permission from Ref. [281]. Copyright 2021, Elsevier.
Fig. 24. (a) Statistical counts of colonies under illumination and without illumination, respectively. (b) Bacteria removal efficiency over the prepared samples under visible-light illumination (λ ≥ 420 nm). The calculated work function and the corresponding structural model of the (111) plane of CeO2 (c) and the calculated work function and the corresponding structural model of the (001) plane of polymeric C3N4 (d). (e) The planar-averaged electron density difference ∆ρ and side view of the charge density difference over the CeO2/polymeric C3N4 heterojunction. The orange and purple areas represent the depletion and accumulation of electrons, respectively. Reprinted with permission from Ref. [89]. Copyright 2020, John Wiley and Sons.
Fig. 25. (a) UV-vis spectra of MIL-12 (Ti), NH2-MIL-125 (Ti), OH-MIL-125 (Ti), and CH3-MIL-125 (Ti). (b) Schematic images of NH2-MIL-125 (Ti) reveal defect sites in the cluster. (c) Production yield rates of ammonia over photocatalysts for 15 h. (d) Proposed mechanism for photocatalytic N2 fixation over NH2-MIL-125 (Ti). Reprinted with permission from Ref. [292]. Copyright 2020, Elsevier.
Fig. 26. (a) View of the charge difference map (yellow, positive density difference; cyan, negative density difference) for Al-PMOF(Fe)-adsorbing N2: C, gray; N, blue; H, white; O, red; Al, pink; Fe, purple. Free energy diagram of the associative alternating (b) and distal (c) pathways in Al-PMOF(Fe). Reprinted with permission from Ref. [293]. Copyright 2021, American Chemical Society.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[3] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[4] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[5] | 张雯, 宋彩彩, 王嘉蔚, 蔡舒婷, 高梦语, 冯有祥, 鲁统部. 双向主客体作用促进水溶液中选择性光催化CO2还原与醇氧化[J]. 催化学报, 2023, 52(9): 176-186. |
[6] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[7] | 李晓娟, 祁明雨, 李婧宇, 谭昌龙, 唐紫蓉, 徐艺军. PdS修饰的ZnIn2S4复合材料用于可见光催化硫醇偶联制备二硫化物同时产氢[J]. 催化学报, 2023, 51(8): 55-65. |
[8] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[9] | 袁鑫, 范海滨, 刘杰, 覃龙州, 王剑, 段秀, 邱江凯, 郭凯. 连续流技术在光氧化还原催化转化的最新进展[J]. 催化学报, 2023, 50(7): 175-194. |
[10] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[11] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[12] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[13] | Mengistu Tulu Gonfa, 申升, 陈浪, 胡彪, 周威, 白张君, 区泽堂, 尹双凤. 光催化苯制苯酚的研究进展[J]. 催化学报, 2023, 49(6): 16-41. |
[14] | 宋昕杰, 范世鹏, 蔡泽华, 杨洲, 陈旬, 付贤智, 戴文新. Cu/CeO2上可见光辅助热催化合成NH3: H2O存在下NO通过CO还原的途径[J]. 催化学报, 2023, 49(6): 168-179. |
[15] | 张海波, 王中辽, 张金锋, 代凯. 金属硫化物基异质结光催化剂: 原理、影响、应用和原位表征[J]. 催化学报, 2023, 49(6): 42-67. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||