催化学报 ›› 2022, Vol. 43 ›› Issue (8): 2111-2140.DOI: 10.1016/S1872-2067(22)64096-8

• 综述 • 上一篇    下一篇

无机-有机杂化光催化剂: 合成、机理及应用

杨辉a, 代凯a,*(), 张金锋a,#(), Graham Dawsonb   

  1. a淮北师范大学绿色和精准合成化学及应用教育部重点实验室, 安徽淮北235000
    b西交利物浦大学化学系, 江苏苏州215123
  • 收稿日期:2021-12-24 接受日期:2022-03-27 出版日期:2022-08-18 发布日期:2022-06-20
  • 通讯作者: 代凯,张金锋
  • 基金资助:
    国家自然科学基金(51572103);国家自然科学基金(51973078);安徽省杰出青年基金(1808085J14);安徽省教育厅重大项目(KJ2020ZD005);安徽省教育厅重点项目(KJ2019A0595)

Inorganic-organic hybrid photocatalysts: Syntheses, mechanisms, and applications

Hui Yanga, Kai Daia,*(), Jinfeng Zhanga,#(), Graham Dawsonb   

  1. aKey Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei 235000, Anhui, China
    bDepartment of Chemistry, Xi’an Jiaotong Liverpool University, Suzhou 215123, Jiangsu, China
  • Received:2021-12-24 Accepted:2022-03-27 Online:2022-08-18 Published:2022-06-20
  • Contact: Kai Dai, Jinfeng Zhang
  • About author:Kai Dai (Huaibei Normal University) received his B.A. degree from Anhui University (China) in 2002, and Ph.D. degree from Shanghai University (China) in 2007. He worked in Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences at 2007, and then in Huaibei Normal University at 2010. He is Distinguished Young Scholars Recipients of Natural Science Foundation of Anhui Province (2018) and head of Anhui Provincial Teaching Team (2019). His research interests mainly focus on semiconductor photocatalysis. He has published more than 120 peer-reviewed papers, including 6 hot paper of ESI and 19 highly cited papers of ESI.
    Jinfeng Zhang (Huaibei Normal University) received his M.S. degree from Ningxia University (China) in 2007, and Ph.D. degree from Wuhan University of Technology (China) in 2016. He carried out postdoctoral research in Wuhan University of Technology from 2016 to 2018. Since the end of 2007, he has been working in Huaibei Normal University. His research interests mainly focus on semiconductor photocatalysis. As the first author or corresponding author, he has published more than 50 SCI papers in solar RRL, Appl. Catal. B: Environ., Chem. Eng. J and other international academic journals, including 3 hot paper of ESI and 12 highly cited papers of ESI. He has mainly undertaken more than 6 research projects, including the National Natural Science Foundation of China, China Postdoctoral Science Foundation and Anhui Provincial Department of education.
  • Supported by:
    National Natural Science Foundation of China(51572103);National Natural Science Foundation of China(51973078);Distinguished Young Scholar of Anhui Province(1808085J14);Major projects of Education Department of Anhui Province(KJ2020ZD005);Key Foundation of Educational Commission of Anhui Province(KJ2019A0595)

摘要:

由无机与有机组分组成的无机-有机杂化材料因其优异的性能及良好的物理化学性质在光催化领域得到了广泛的关注. 目前, 已经开发的单相光催化剂有很多种, 但其很难同时满足宽的光激发范围以及高的光吸收能力和强的氧化还原能力等需求, 因此, 科研人员开发了很多方法去解决上述问题,主要包括以下两大类. 第一类, 修饰光催化剂扩大光激发范围以及增强可见光吸收. 例如构建固溶体、引入表面缺陷、杂质掺杂、染料敏化和表面等离子体共振等策略. 第二类, 构建半导体异质结, 通过界面处的协同作用有效促进光生电子空穴对的转移与分离. 例如type II型、直接Z型以及S型异质结等.

有机成分与无机成分的杂化是有效解决上述问题的方法之一. 大部分有机材料具有成本低、吸光系数高以及比表面积大等优点; 但低的强度以及宽的带隙限制了有机材料在光催化上的应用. 而大部分无机材料具有高强度、窄带隙以及良好的光学性能. 但低韧性和较差的分散性限制了无机材料在光催化上的应用. 无机-有机杂化材料不仅保留了无机与有机组分的原有性质, 而且界面处组分之间的协同作用会产生新的性质, 如高的载流子传输能力和高的光吸收能力等. 无机-有机杂化材料是多相材料, 其中的一相是纳米材料, 从而保留了纳米材料的量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应; 并且纳米结构的光催化剂相对于体相材料而言, 具有比表面积高、载流子输运距离短和电子结构可调等优势. 无机-有机杂化光催化材料既保留了高的光吸收能力, 又保留了高氧化性的空穴与高还原性的电子, 因而在光催化领域的应用越来越广泛.

本文综述了无机-有机杂化材料的合成、机理以及在光催化领域的应用. 首先, 介绍了无机-有机光催化剂的作用、优缺点以及设计原则, 讨论了自上而下和自下而上制备无机-有机杂化材料的方法, 为设计杂化材料提供思路. 其次, 对有机组分与无机组分的相互作用力进行分类讨论. 再次, 阐述了无机-有机杂化材料的优势, 讨论了进一步改进无机-有机光催化剂的方法. 最后, 总结了无机-有机杂化材料在光催化领域面临的问题与挑战, 并对未来发展进行了展望.

关键词: 光催化剂, 无机-有机杂化, 合成, 机理, 应用

Abstract:

Inorganic-organic hybrid materials are promising for application in the field of photocatalysis because of their excellent properties. Therefore, their syntheses, mechanisms, and applications are reviewed in this paper. First, we introduce the role of inorganic-organic photocatalysts, their advantages and disadvantages, and their design principles. Second, we present the top-down and bottom-up synthesis methods of the hybrid materials. The interaction between inorganic and organic components in hybrid materials is discussed, followed by how to improve inorganic-organic photocatalysts. Third, the applications of hybrid materials in the field of photocatalysis, such as realizing hydrogen evolution, organic pollutant degradation, heavy metals and CO2 reduction, sterilization, and nitrogen fixation, are examined. Finally, the application prospects and development directions of inorganic-organic hybrid materials are explored and the unsolved problems are described.

Key words: Photocatalyst, Inorganic-organic hybrid, Synthesis, Mechanism, Application