催化学报 ›› 2022, Vol. 43 ›› Issue (8): 2091-2110.DOI: 10.1016/S1872-2067(21)64052-4
黄楚强a,†, 周建清c,†, 段丁槊a, 周前程a, 汪杰明a, 彭博文a, 余罗b,*(), 余颖a,#(
)
收稿日期:
2021-12-30
接受日期:
2022-02-28
出版日期:
2022-08-18
发布日期:
2022-06-20
通讯作者:
余罗,余颖
作者简介:
第一联系人:†共同第一作者.
基金资助:
Chuqiang Huanga,†, Jianqing Zhouc,†, Dingshuo Duana, Qiancheng Zhoua, Jieming Wanga, Bowen Penga, Luo Yub,*(), Ying Yua,#(
)
Received:
2021-12-30
Accepted:
2022-02-28
Online:
2022-08-18
Published:
2022-06-20
Contact:
Luo Yu, Ying Yu
About author:
First author contact:†Contributed equally to this work.
Supported by:
摘要:
构建低碳绿色能源体系是全世界追求的目标. 氢气具有能量密度高、零碳排放的优势, 是理想的清洁能源. 目前市场上95%以上的氢气来自于与化石燃料相关的工艺, 如煤气化、甲烷蒸汽重整等方法, 在制氢过程中不可避免地会排放大量的温室气体. 电解水制氢具有产氢纯度高、工艺简单、转换效率高等优点, 还可直接与可再生能源(如太阳能、风能等)耦合, 是一种很有前景的绿色制氢技术. 碱性电解水, 由于廉价的非贵金属基材料(如Fe、Co、Ni、Cu等)可以在电解槽中很好地工作, 展现出了良好的应用前景.
为了进一步提高非贵金属电催化剂分解水的催化活性, 科研人员从增加活性位点数量和提高单个活性位点的本征活性两方面着手, 发展新的高效电催化剂. 独特的纳米结构设计能够增加催化剂的活性位点数量, 进而提高催化剂的催化活性, 但催化性能的提高程度有限. 增加单个活性位点的本征活性是从本质上提高催化剂活性的另一种有效策略. 其中, 异质原子修饰是提高催化剂本征活性最有效的方法之一, 它可以通过调节催化剂的物理化学性质来提高催化剂的本征活性, 包括诱导相变、提高电导率、调整电子密度和建立双催化位点等.
本文基于电解水析氢反应(HER)和析氧反应(OER)在碱性电解质中的反应路径, 综述了异质原子在增强反应动力学中的关键作用, 特别是异质原子的引入可以直接或间接地优化活性位点与中间体之间的相互作用, 从而提高本征活性. 首先, 总结了一系列具有代表性的异质原子修饰的电催化剂; 其次, 深入讨论了异质原子在OER和HER反应路径中的重要作用; 最后, 提出了异质原子修饰的电极的一些挑战和前景, 旨在从原子层面揭示异质原子对电解水反应机理的影响, 为合理设计高效电解水催化剂提供指导. 本文为构建高效、低成本的电催化剂, 并应用于水电解以及其他能源转化领域提供一些借鉴.
黄楚强, 周建清, 段丁槊, 周前程, 汪杰明, 彭博文, 余罗, 余颖. 异质原子在碱性电解水催化剂中的作用——反应机理[J]. 催化学报, 2022, 43(8): 2091-2110.
Chuqiang Huang, Jianqing Zhou, Dingshuo Duan, Qiancheng Zhou, Jieming Wang, Bowen Peng, Luo Yu, Ying Yu. Roles of heteroatoms in electrocatalysts for alkaline water splitting: A review focusing on the reaction mechanism[J]. Chinese Journal of Catalysis, 2022, 43(8): 2091-2110.
Fig. 1. Schematic illustration for the alkaline HER mechanism (a) and different hydrogen adsorption/desorption behaviors on the catalyst surface (b). (c) A volcano plot of various metals in acidic electrolyte. Reprinted with permission from Ref. [20]. Copyright 2017, American Association for the Advancement of Science. (d) A volcano plot of different metals in alkaline electrolyte. Reprinted with permission from Ref. [57]. Copyright 2013, Royal Society of Chemistry.
Fig. 2. (a) AEM pathway for OER. Reprinted with permission from Ref. [66]. Copyright 2021, Royal Society of Chemistry. (b) Scaling relationship between ΔG*OOH and ΔG*OH on various catalysts. Reprinted with permission from Ref. [67]. Copyright 2016, Nature Publishing Group. (c) A volcano-type relationship between OER activity and the calculated oxygen binding strength (ΔG*O - ΔG*OH). Reprinted with permission from Ref. [68]. Copyright 2011, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. LOM pathways for OER on (d) oxygen site and (e) metal site. Reprinted with permission from Ref. [66]. Copyright 2021, Royal Society of Chemistry. (f) Schematic illustration of the typical band structure of perovskite material, exhibiting the motion of the metal d-band relative to the oxygen p-band when cationic redox becomes anionic redox. Reprinted with permission from Ref. [69]. Copyright 2016, Nature Publishing Group.
Fig. 3. (a) Schematic illustration of orbital hybridization and formed chemical bonding between a transition metal surface and an adsorbate. Reprinted with permission from Ref. [78]. Copyright 2005, Springer Science Business Media, Inc. (b) Schematic illustration of bond formation between a metal surface and adsorbate as well as the density of states (DOS) of Co4N and V-Co4N. (c) ΔG*H comparison of Co4N and V-Co4N. Reprinted with permission from Ref. [79]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (d) H2 binding energy diagram of various bimetallic Ni-Cu/C catalysts. (e) A volcano-type relationship between overpotentials and calculated hydrogen binding energy. Reprinted with permission from Ref. [80]. Copyright 2020, American Chemical Society. (f) Free energy diagram of CoP and M-CoP (M = Ni, Mn, Fe). (g) Calculated DOS curves of CoP and Ni-CoP. Reprinted with permission from Ref. [81]. Copyright 2018, Elsevier Ltd.
Fig. 4. (a) Top view of H adsorption on Co2P (201) (a) and N-Co2P (201) (b) surface, where pink, light blue, blue, and white balls represent P, Co, N, and H atoms, respectively. (c) Lowdin charge analysis of Co atoms. (d) Calculated ΔG*H2O on Co2P and N-Co2P surfaces. (e) Calculated ΔG*H on Co2P (201), Co2P (200), N-Co2P (201), N-Co2P (200), and Pt (111) surfaces. (f) d-Orbital PDOS of Co2P and N-Co2P; Contour plot of the electron density differences of the Co-H bonding region on Co2P (g) and N-Co2P (h) surface. Reprinted with permission from Ref. [84]. Copyright 2019, American Chemical Society.
Fig. 5. (a) Top-view structures of N-NiCo2S4 (100). (b) Electron density difference of NiCo2S4 (100) and N-NiCo2S4 (100). (c) Energy profiles of alkaline HER on NiCo2S4 (100) and N-NiCo2S4 (100) surfaces. Reprinted with permission from Ref. [88]. Copyright 2018, The Author(s). (d) Top-view structures of Fe0.25Co0.75P (101). (e) Electron density differences of (b) CoP (101) and Fe0.25Co0.75P (101). Calculated ΔG*H2O (f) and ΔG*H (g) on CoP (101), Fe0.25Co0.75P (101), Fe0.5Co0.5P (101), and Fe0.75Co0.25P (101) surfaces. Reprinted with permission from Ref. [89]. Copyright 2019, Elsevier Ltd.
Fig. 6. (a) Calculated d-orbital PDOS of CoP, CoP-S1, and S-CoP (002), where CoP-S1 and S-CoP represent S-doped CoP and S-doped CoP with a P-vacancy, respectively. (b) Calculated ΔG*H on (002) and (101) surfaces of CoP, CoP-S1, and S-CoP. (c) Electron density difference of the Co-H bonding region on the CoP (002), CoP-S1 (002), and S-CoP (002) surfaces. (d) Calculated ΔG*H2O on the CoP, CoP-S1, and S-CoP surfaces, where the inset shows photographs of the hydrophilicity test on CoP and S-CoP surfaces. Reprinted with permission from Ref. [90]. Copyright 2020, Elsevier Ltd. (e) Optimized structures of CoSe, CoSe/Ni, CoSe/VCo2, CoSe/Ni-VCo, and CoSe/Ni-VCo2, where orange, purple, brown, and white balls represent Se, Co, Ni, and H atoms, respectively. (f) Calculated ΔG*H2O on these catalyst surfaces. (g,h) Local DOS of CoSe/Ni-VCo2. Reprinted with permission from Ref. [91]. Copyright 2020, Wiley-VCH GmbH.
Fig. 7. (a) Schematic illustration of the alkaline HER mechanism on dual-sites electrode surface. (b) HER activity of dual-site Ni(OH)2/metal (Ni, Ag, and Cu) catalysts in acidic and alkaline electrolytes. Reprinted with permission from Ref. [92]. Copyright 2012, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. Calculated ΔG*H2O (c) and ΔG*H (d) on MoN, g-C3N4, and C3N4@MoN surfaces. (e) Schematic illustration of dual-site mechanism of C3N4@MoN. Reprinted with permission from Ref. [94]. Copyright 2018, Elsevier Ltd. (f) Schematic illustration of dual-site mechanism of Ni(OH)2-NiMoOx/NF catalyst. Reprinted with permission from Ref. [95]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 8. (a) Schematic illustration of the alkaline HER mechanism on a dual-site Ni(OH)2/Ni3S2 nanoforest. O 1s XPS spectra of Ni(OH)2/Ni3S2 (b) and Ni3S2 (c) before and after HER. Reprinted with permission from Ref. [96]. Copyright 2018, Elsevier B.V. (d) Top view of optimized c-NiP2, m-NiP2, and c/m-NiP2 structures. Calculated free energy of hydrogen absorption (e) and water dissociation (f) on these catalyst surfaces. (g) Calculated charge density distribution for the c/m-NiP2 catalyst with phase junction. Reprinted with permission from Ref. [97]. Copyright 2020, Wiley-VCH GmbH.
Fig. 9. (a) Calculated Bader charges for Co4 of Co4N (111) and Cr4 of Cr-Co4N (111), where the inset is the electron density plot of water molecule. Calculated free energy of water absorption (b) and water dissociation (c) on the Co4N and Cr-Co4N surfaces. Reprinted with permission from Ref. [98]. Copyright 2019, WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. (d) Calculated Pun values of several transition metal dopants (V, Cr, Mo, Mn, Fe, Co, Ni, and Cu). (e) Relationship between overpotentials for alkaline HER and Pun values for these dopants. (f) Calculated ΔG*H2O of M-CoP vs. Pun of the dopants. Reprinted with permission from Ref. [99]. Copyright 2020, The Author(s).
Fig. 10. (a) Schematic representation of the orbital hybridization between metal 3d and O 2p of La1-xSrxCoO3-δ. (b) OER free energy of LOM and AEM on La1-xSrxCoO3-δ. Reprinted with permission from Ref. [100]. Copyright 2016, the Author(s). (c) Schematic diagram of Co 3d-O 2p hybridization for LaCoO3 and LaCo0.9Fe0.1O3. Reprinted with permission from Ref. [101]. Copyright 2017, American Chemical Society. (d) Fe Mössbauer spectra tested at 298 K. (e) Schematic illustration of Fe 3d orbital degeneration. Reprinted with permission from Ref. [102]. Copyright 2018, Elsevier Ltd. (f) Crystal structure of La0.5Sr1.5NiO4. (g) Computed values of O p-band center, B-B’ overlap, and overlap center of different catalysts. Reprinted with permission from Ref. [103]. Copyright © 2018, The Author(s).
Fig. 11. (a) Crystal structures of Ni-doped ZnCo2O4. (b) Calculated formation energy of ZnCo2-xNixO4 and energy difference between the O p-band center and Moh d-band center of ZnCo2-xNixO4. Reprinted with permission from Ref. [108]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 12. (a) Free energy diagram of the LOM on an (FeCoCrNi)OOH catalyst. (b) Energy comparison of RLS following LOM and AEM on (FeCoCrNi)OOH and (CoCrNi)OOH models. (c) HER activity of various catalysts at different pH values. (d) Detected MS signals of oxygen products using 18O isotope-labeled catalysts. Reprinted with permission from Ref. [110]. Copyright 2020, the Author(s).
Fig. 13. Single-site OER route (a) and the corresponding free energy on FeN4(OH)@CNT (b) and CrN4(OH)@CNT (c) catalysts. Dual-site OER route (d) and the corresponding free energy on FeN4(OH)@CNT (e) and CrN4(OH)@CNT (f) catalysts. Reprinted with permission from Ref. [112]. Copyright 2020, Royal Society of Chemistry.
Fig. 14. (a) Wavelet transform diagram from the k3-weighted EXAFS signal for Ni K-edge of Ni(OH)2 and Ir/Ni(OH)2 as well as Ir LIII-edge of Ir NPs and Ir/Ni(OH)2 after OER. Reprinted with permission from Ref. [114]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) Free energy diagram for OER following the single-site route (Fe-NHGF, Co-NHGF and Ni-NHGF) and dual-site route (Ni-NHGF). Reprinted with permission from Ref. [115]. Copyright 2018, The Author(s). (c,d) Schematic illustration of the dual-site OER mechanism at the S1 site of the NiO/NiFe LDH intersection; (e) Schematic illustration of the single-site OER mechanism. (f) Free energy diagram of the OER pathway on S1 and L1 sites. Reprinted with permission from Ref. [116]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
[1] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[2] | 韩策, 梅丙宝, 张庆华, 张慧敏, 姚鹏飞, 宋平, 宫雪, 崔培昕, 姜政, 谷林, 徐维林. 钒掺杂钨青铜内通道氨配位的钌单原子用于高效析氢反应[J]. 催化学报, 2023, 51(8): 80-89. |
[3] | 韩璟怡, 管景奇. 通过表面镧改性和体相锰掺杂协助钴尖晶石酸性下析氧[J]. 催化学报, 2023, 51(8): 1-4. |
[4] | 陈斌, 蒋亚飞, 肖海, 李隽. 石墨炔负载的双金属单团簇催化剂用于碱性析氢反应[J]. 催化学报, 2023, 50(7): 306-313. |
[5] | 张光颖, 刘旭, 张欣欣, 梁志坚, 邢耕宇, 蔡斌, 沈迪, 王蕾, 付宏刚. P修饰提高Fe-N-C的氧反应活性用于高稳定的锌-空气电池[J]. 催化学报, 2023, 49(6): 141-151. |
[6] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[7] | 张志普, 卢珊珊, 张兵, 史艳梅. 揭示硫掺杂的碳材料在水电氧化过程中活性苯醌基团及惰性硫残留物的形成[J]. 催化学报, 2023, 47(4): 129-137. |
[8] | Sue-Faye Ng, 陈星竹, Joel Jie Foo, 熊墨, Wee-Jun Ong. 2D氮化碳: 通过调节非金属硼掺杂C3N5阐明宽酸性及碱性pH范围的光催化析氢的反应机理[J]. 催化学报, 2023, 47(4): 150-160. |
[9] | 李卓根, 张伟斌, 朱陆军, 高健智, 石先进, 黄宇, 刘鹏, 朱刚强. 通过实验和理论验证Pt0/SrTiO3‒δ复合催化剂双反应路径促进CO2还原[J]. 催化学报, 2023, 46(3): 113-124. |
[10] | 王妮, 张学鹏, 韩金秀, 雷海涛, 张清鑫, 张航, 张伟, 曹睿. 第二配位层磺酸根在电催化析氢反应中的作用[J]. 催化学报, 2023, 45(2): 88-94. |
[11] | 吴尧, 杨杰夫, 郑媚, 胡点轶, Teddy Salim, 汤碧珺, 刘政, 李述周. 直接化学气相沉积法制备二维钴铁氧体用于高效析氧反应[J]. 催化学报, 2023, 55(12): 265-277. |
[12] | 杨竣皓, 安露露, 王双, 张辰浩, 罗官宇, 陈应泉, 杨会颖, 王得丽. 层状双氢氧化物基电解水催化剂的缺陷工程调控策略[J]. 催化学报, 2023, 55(12): 116-136. |
[13] | 吴立清, 梁庆, 赵家仪, 朱娟, 贾宏男, 张伟, 蔡苹, 罗威. 铋掺杂的二氧化钌催化剂用于高效酸性水氧化[J]. 催化学报, 2023, 55(12): 182-190. |
[14] | 白雪, 韩璟怡, 陈思雨, 牛效迪, 管景奇. 双杂原子配位提高单原子锰位点的析氧活性[J]. 催化学报, 2023, 54(11): 212-219. |
[15] | 万凯, 罗江水, 刘文博, 张婷, Jordi Arbiol, 张漩, Palaniappan Subramanian, 傅志勇, Jan Fransaer. 金属有机框架衍生的阳离子调控金属硫化物增强析氧反应活性[J]. 催化学报, 2023, 54(11): 290-297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||