催化学报 ›› 2022, Vol. 43 ›› Issue (7): 1667-1673.DOI: 10.1016/S1872-2067(21)63859-7
敬科a, 魏明恺a, 颜思顺a, 廖黎丽a, 牛亚楠a, 罗书平b, 于博a,*(), 余达刚a,#(
)
收稿日期:
2021-04-13
接受日期:
2021-05-22
出版日期:
2022-05-20
发布日期:
2021-06-15
通讯作者:
于博,余达刚
基金资助:
Ke Jinga, Ming-Kai Weia, Si-Shun Yana, Li-Li Liaoa, Ya-Nan Niua, Shu-Ping Luob, Bo Yua,*(), Da-Gang Yua,#(
)
Received:
2021-04-13
Accepted:
2021-05-22
Online:
2022-05-20
Published:
2021-06-15
Contact:
Bo Yu, Da-Gang Yu
About author:
Da-Gang Yu (College of Chemistry, Sichuan University) was invited as a young member of the 6th Editorial Board of Chin. J Catal. in 2020. Prof. Da-Gang Yu received his B.S. degree from Sichuan University (P. R. China) in 2007 and Ph.D. degree with Prof. Zhang-Jie Shi from Peking University (P. R. China), 2012. He carried out postdoctoral research with Humboldt fellowship in the group of Prof. Frank Glorius, Muenster University (Germany). Since 2015, he has been working independently in Sichuan University (China) with support from “The Thousand Young Talents Plan” and the National Natural Science Foundation of China‒Outstanding Young Scholars. His research interests mainly focus on novel transformations of CO2, radical chemistry and novel transition-metal catalysis. He has coauthored about 90 peer-reviewed papers and 11 patents.
Supported by:
摘要:
二氧化碳(CO2)作为一种无毒、廉价、可再生的碳一合成子, 被广泛用于合成重要的精细化学品. 芳基乙酸广泛存在于许多药物分子中, 是一类重要的羧酸分子. 苄位卤代物具有商业可得且价格低廉的优势, 是合成芳基乙酸的理想底物. 因此, 以苄位卤代物和CO2为原料合成芳基乙酸具有很大的吸引力. 传统的合成方法需要将苄基卤化物预先制备成水、氧敏感的苄位金属试剂, 再与CO2发生羧基化反应, 但因兼容性较差, 操作繁琐, 限制了实际应用. 另外, 苄位卤化物与CO2的直接电羧基化反应也有报道, 但存在需要牺牲阳极、使用贵金属电极和支持电解质等不足. 此外, 过渡金属催化苄位卤代物与CO2羧基化反应得到长足发展, 但也存在底物范围有限、官能团兼容性不佳、使用金属还原剂和存在重金属污染等问题.
近年来, 可见光催化已经成为实现CO2高效转化的有力工具, 具有绿色环保、官能团兼容性好等特点. 如果能利用可见光催化实现苄位卤代物与CO2的还原羧基化, 将可以进一步提升该类转化的底物适用性和反应的实用性. 本文利用廉价的有机染料为光敏剂和有机胺为电子给体, 在常压CO2和室温条件下, 实现了苄位氯代物和溴代物的还原羧基化反应. 一级、二级和三级的苄位卤代物都能顺利地参与该羧基化反应, 芳环上的卤原子和硼酸酯等常见的偶联官能团也能兼容. 另外, 成功地将这种方法放大到了克级反应, 合成了一些重要的药物分子和药物分子前体, 实现了一些重要的天然产物的羧酸化衍生, 证明了这种合成方法具有潜在的应用价值. 机理实验结果表明, 该反应很可能主要经历还原态的光敏剂对苄位卤代物的两次单电子还原过程, 从而先后产生苄位自由基和苄位碳负离子, 后者可以快速捕获CO2生成羧酸盐, 质子化后生成芳基乙酸. 综上, 可见光催化的羧基化反应具有反应条件温和、无需过渡金属参与、底物范围广、官能团兼容性好、易克级放大、催化剂用量低等优势, 为实现芳基乙酸的高效合成提供了一种新方法.
敬科, 魏明恺, 颜思顺, 廖黎丽, 牛亚楠, 罗书平, 于博, 余达刚. 可见光催化二氧化碳与苄位卤代物的羧基化: 温和条件且无过渡金属[J]. 催化学报, 2022, 43(7): 1667-1673.
Ke Jing, Ming-Kai Wei, Si-Shun Yan, Li-Li Liao, Ya-Nan Niu, Shu-Ping Luo, Bo Yu, Da-Gang Yu. Visible-light photoredox-catalyzed carboxylation of benzyl halides with CO2: Mild and transition-metal-free[J]. Chinese Journal of Catalysis, 2022, 43(7): 1667-1673.
Scheme 2. Substrate scope of benzyl chlorides. Reaction conditions as presented in Table 1, entry 1. a 16 h. b 3 mol% 4CzIPN, 2.0 equiv. TMEDA, 2.0 equiv. Cs2CO3. c 2 mol% 4CzIPN. d The ratio of 2h to phenylacetic acid is 14.3:1. e 3 mol% 4DPAIPN, 24 h. f The ratio of 2q to phenylacetic acid is 16.7:1. g 5 h. h 6 h, then MeI (3 equiv.), 65 °C, 3 h. i 5 mL N,N-dimethylacetamide (DMAc) used instead of DMF. j 3 equiv. TMEDA. k 10 h. l 2 h. m 0.5 mol% 4DPAIPN.
Scheme 3. Substrate scope of benzyl bromides. Reaction conditions: 3 (0.2 mmol), 1 atm CO2, 4DPAIPN (0.002 mmol), TMEDA (0.12 mmol), Cs2CO3 (0.4 mmol), DMF (2 mL), 30 W blue LED, rt, 8 h. a 16 h. b Reaction conditions as shown in Table 1, entry 1.
Fig. 2. Reaction profiles of compounds 1a and 11. Reaction conditions for 1a as presented in Table 1, entry 1. Reaction conditions for 11: 11 (0.2 mmol), other conditions as presented in Table 1, entry 1 except the addition of TMEDA.
[1] |
K. Huang, C.-L. Sun, Z.-J. Shi, Chem. Soc. Rev., 2011, 40, 2435-2452.
DOI PMID |
[2] |
M. He, Y. Sun, B. Han, Angew. Chem. Int. Ed., 2013, 52, 9620-9633.
DOI URL |
[3] |
Q. Liu, L. P. Wu, R. Jackstell, M. Beller, Nat. Commun., 2015, 6, 5933.
DOI URL |
[4] |
Y. Li, X. Cui, K. Dong, K. Junge, M. Beller, ACS Catal., 2017, 7, 1077-1086.
DOI URL |
[5] |
A. Tortajada, J. Francisco, M. Börjesson, T. Moragas, R. Martin, Angew. Chem. Int. Ed., 2018, 57, 15948-15982.
DOI PMID |
[6] |
Y. Cao, X. He, N. Wang, H.-R. Li, L.-N. He, Chin. J. Chem., 2018, 36, 644-659.
DOI URL |
[7] |
C. S. Yeung, Angew. Chem. Int. Ed., 2019, 58, 5492-5502.
DOI URL |
[8] | Z. Zhang, L. Gong, X.-Y. Zhou, S.-S. Yan, J. Li, D.-G. Yu, Acta Chim. Sin., 2019, 77, 783-793. |
[9] |
Z. Zhang, J.-H. Ye, T. Ju, L.-L. Liao, H. Huang, Y.-Y. Gui, W.-J. Zhou, D.-G. Yu, ACS Catal., 2020, 10, 10871-10885.
DOI URL |
[10] | Z. Fan, Z. Zhang, C. Xi, ChemSusChem, 2020, 13, 6201-6218. |
[11] |
C.-K. Ran, X.-W. Chen, Y.-Y. Gui, J. Liu, L. Song, K. Ren, D.-G. Yu, Sci. China Chem., 2020, 63, 1336-1351.
DOI URL |
[12] |
X. Guo, Y. Wang, J. Chen, G. Li, J.-B. Xia, Chin. J. Org. Chem., 2020, 40, 2208-2220.
DOI URL |
[13] |
X. He, L.-Q. Qiu, W.-J. Wang, K.-H. Chen, L.-N. He, Green Chem., 2020, 22, 7301-7320.
DOI URL |
[14] |
C. Zhou, M. Li, J. T. Yu, S. Sun, J. Cheng, Chin. J. Org. Chem., 2020, 40, 2221-2231.
DOI URL |
[15] |
L. Song, Y.-X. Jiang, Z. Zhang, Y.-Y. Gui, X.-Y. Zhou, D.-G. Yu, Chem. Commun., 2020, 56, 8355-8367.
DOI URL |
[16] |
S. Pradhan, S. Roy, B. Sahoo, I. Chatterjee, Chem. Eur. J., 2021, 27, 2254-2269.
DOI URL |
[17] |
B. Cai, H. W. Cheo, T. Liu, J. Wu, Angew. Chem. Int. Ed., 2021, 60, 18950-18980.
DOI URL |
[18] |
G. Zhang, Y. Cheng, M. Beller, F. Chen, Adv. Synth. Catal., 2021, 363, 1583-1596.
DOI URL |
[19] |
J.-H. Ye, T. Ju, H. Huang, L.-L. Liao, D.-G. Yu, Acc. Chem. Res., 2021, 54, 2518.
DOI URL |
[20] | B. M. Bhanage, M. Arai, S. I. Fujita, Transformation and Utilization of Carbon Dioxide, Springer-Verlag, Berlin Heidelberg, 2014, 245-262. |
[21] |
D. Kong, P. J. Moon, E. K. J. Lui, O. Bsharat, R. J. Lundgren, Science, 2020, 369, 557-561.
DOI URL |
[22] |
C. E. I. Knappke, S. Grupe, D. Gärtner, M. Corpet, C. Gosmini, A. Jacobi von Wangelin, Chem. Eur. J., 2014, 20, 6828-6842.
DOI URL |
[23] | H. Senboku, A. Katayama, Curr. Opin. Green Sustainable Chem., 2017, 3, 50-54. |
[24] |
G. Silvestri, S. Gambino, G. Filardo, A. Gulotta, Angew. Chem. Int. Ed., 1984, 23, 979-980.
DOI URL |
[25] | A. A. Isse, A. Gennaro, Chem. Commun., 2002, 2798-2799. |
[26] |
T. Fujihara, K. Nogi, T. Xu, J. Terao, Y. Tsuji, J. Am. Chem. Soc., 2012, 134, 9106-9109.
DOI URL |
[27] |
T. León, A. Correa, R. Martin, J. Am. Chem. Soc., 2013, 135, 1221-1224.
DOI URL |
[28] |
A. Correa, T. León, R. Martin, J. Am. Chem. Soc., 2014, 136, 1062-1069.
DOI URL |
[29] |
T. Moragas, M. Gaydou, R. Martin, Angew. Chem. Int. Ed., 2016, 55, 5053-5057.
DOI PMID |
[30] |
F. Juliá-Hernández, T. Moragas, J. Cornella, R. Martin, Nature, 2017, 545, 84-88.
DOI URL |
[31] |
Y.-G. Chen, B. Shuai, C. Ma, X.-J. Zhang, P. Fang, T.-S. Mei, Org. Lett., 2017, 19, 2969-2972.
DOI URL |
[32] |
Q.-Y. Meng, S. Wang, B. König, Angew. Chem. Int. Ed., 2017, 56, 13426-13430.
DOI URL |
[33] |
C. Ma, C.-Q. Zhao, X.-T. Xu, Z.-M. Li, X.-Y. Wang, K. Zhang, T.-S. Mei, Org. Lett., 2019, 21, 2464-2467.
DOI URL |
[34] |
B. Sahoo, P. Bellotti, F. Julia-Hernandez, Q.-Y. Meng, S. Crespi, B. König, R. Martin, Chem. Eur. J., 2019, 25, 9001-9005.
DOI URL |
[35] |
R. J. Somerville, C. Odena, M. F. Obst, N. Hazari, K. H. Hopmann, R. Martin, J. Am. Chem. Soc., 2020, 142, 10936-10941.
DOI PMID |
[36] |
A. Correa, R. Martín, J. Am. Chem. Soc., 2009, 131, 15974-15975.
DOI URL |
[37] |
T. Mita, Y. Higuchi, Y. Sato, Chem. Eur. J., 2015, 21, 16391-16394.
DOI URL |
[38] |
S. Zhang, W.-Q. Chen, A. Yu, L.-N. He, ChemCatChem, 2015, 7, 3972-3977.
DOI URL |
[39] |
K. Shimomaki, K. Murata, R. Martin, N. Iwasawa, J. Am. Chem. Soc., 2017, 139, 9467-9470.
DOI PMID |
[40] |
K. Shimomaki, T. Nakajima, J. Caner, N. Toriumi, N. Iwasawa, Org. Lett., 2019, 21, 4486-4489.
DOI PMID |
[41] |
S. K. Bhunia, P. Das, S. Nandi, R. Jana, Org. Lett., 2019, 21, 4632-4637.
DOI PMID |
[42] |
C. Zhu, Y.-F. Zhang, Z.-Y. Liu, L. Zhou, H. Liu, C. Feng, Chem. Sci., 2019, 10, 6721-6726.
DOI URL |
[43] |
H. Tran-Vu, O. Daugulis, ACS Catal., 2013, 3, 2417-2420.
DOI URL |
[44] |
S.-S. Yan, D.-S. Wu, J.-H. Ye, L. Gong, X. Zeng, C.-K. Ran, Y.-Y. Gui, J. Li, D.-G. Yu, ACS Catal., 2019, 9, 6987-6992.
DOI URL |
[45] |
S.-L. Xie, X.-Y. Cui, X.-T. Gao, F. Zhou, H.-H. Wu, J. Zhou, Org. Chem. Front., 2019, 6, 3678-3682.
DOI URL |
[46] |
K. Nogi, T. Fujihara, J. Terao, Y. Tsuji, Chem. Commun., 2014, 50, 13052-13055.
DOI URL |
[47] |
J. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed., 2012, 51, 6828-6838.
DOI PMID |
[48] |
C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322-5363.
DOI URL |
[49] |
D. M. Schultz, T. P. Yoon, Science, 2014, 343, 1239176.
DOI URL |
[50] |
N. A. Romero, D. A. Nicewicz, Chem. Rev., 2016, 116, 10075-10166.
DOI URL |
[51] |
Q.-Q. Zhou, Y.-Q. Zou, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed., 2019, 58, 1586-1604.
DOI URL |
[52] |
Y. Chen, L.-Q. Lu, D.-G. Yu, C.-J. Zhu, W.-J. Xiao, Sci. China Chem., 2019, 62, 24-57.
DOI URL |
[53] |
L. Buzzetti, G. E. M. Crisenza, P. Melchiorre, Angew. Chem. Int. Ed., 2019, 58, 3730-3747.
DOI PMID |
[54] |
X. Ren, Z. Lu, Chin. J. Catal., 2019, 40, 1003-1019.
DOI URL |
[55] |
K. Murata, N. Numasawa, K. Shimomaki, J. Takaya, N. Iwasawa, Chem. Commun., 2017, 53, 3098-3101.
DOI URL |
[56] |
V. R. Yatham, Y. Shen, R. Martin, Angew. Chem. Int. Ed., 2017, 56, 10915-10919.
DOI PMID |
[57] |
J.-H. Ye, M. Miao, H. Huang, S.-S. Yan, Z.-B. Yin, W.-J. Zhou, D.-G. Yu, Angew. Chem. Int. Ed., 2017, 56, 15416-15420.
DOI URL |
[58] |
L.-L. Liao, G.-M. Cao, J.-H. Ye, G.-Q. Sun, W.-J. Zhou, Y.-Y. Gui, S.-S. Yan, G. Shen, D.-G. Yu, J. Am. Chem. Soc., 2018, 140, 17338-17342.
DOI PMID |
[59] |
J. Hou, A. Ee, H. Cao, H.-W. Ong, J.-H. Xu, J. Wu, Angew. Chem. Int. Ed., 2018, 57, 17220-17224.
DOI URL |
[60] |
T. Ju, Q. Fu, J.-H. Ye, Z. Zhang, L.-L. Liao, S.-S. Yan, X.-Y. Tian, S.-P. Luo, J. Li, D.-G. Yu, Angew. Chem. Int. Ed., 2018, 57, 13897-13901.
DOI URL |
[61] |
X. Fan, X. Gong, M. Y. Ma, R. Wang, P. J. Walsh, Nat. Commun., 2018, 9, 4936.
DOI URL |
[62] |
H. Wang, Y. Gao, C. Zhou, G. Li, J. Am. Chem. Soc., 2020, 142, 8122-8129.
DOI PMID |
[63] |
W.-J. Zhou, Z.-H. Wang, L.-L. Liao, Y.-X. Jiang, K.-G. Cao, T. Ju, Y. Li, G.-M. Cao, D.-G. Yu, Nat. Commun., 2020, 11, 3263.
DOI URL |
[64] | H. Huang, J.-H. Ye, L. Zhu, C.-K. Ran, M. Miao, W. Wang, H. Chen, W.-J. Zhou, Y. Lan, B. Yu, D.-G. Yu, CCS Chem., 2020, 2, 1746-1756. |
[65] |
T. Ju, Y.-Q. Zhou, K.-G. Cao, Q. Fu, J.-H. Ye, G.-Q. Sun, X.-F. Liu, L. Chen, L.-L. Liao, D.-G. Yu, Nat. Catal., 2021, 4, 304-311.
DOI URL |
[66] |
P. J. Riss, S. Lu, S. Telu, F. I. Aigbirhio, V. W. Pike, Angew. Chem. Int. Ed., 2012, 51, 2698-2702.
DOI URL |
[67] |
D.-T. Yang, M. Zhu, Z. J. Schiffer, K. Williams, X. Song, X. Liu, K. Manthiram, ACS Catal., 2019, 9, 4699-4705.
DOI URL |
[68] |
Y. Basel, A. Hassner, J. Org. Chem., 2000, 65, 6368-6380.
PMID |
[69] |
Z. Zhang, L.-L. Liao, S.-S. Yan, L. Wang, Y.-Q. He, J.-H. Ye, J. Li, Y.-G. Zhi, D.-G. Yu, Angew. Chem. Int. Ed., 2016, 55, 7068-7072.
DOI PMID |
[70] |
L. Song, L. Zhu, Z. Zhang, J.-H. Ye, S.-S. Yan, J.-L. Han, Z.-B. Yin, Y. Lan, D.-G. Yu, Org. Lett., 2018, 20, 3776-3779.
DOI PMID |
[1] | 夏书梅, 杨志文, 陈凯宏, 王宁, 何良年. 基于碳二亚胺调控的甲酸原位产生一氧化碳策略的炔烃氢羧化反应: 二氧化碳的间接利用[J]. 催化学报, 2022, 43(7): 1642-1651. |
[2] | Ernest Pahuyo Delmo, 王忆安, 王菁, 朱尚乾, 李铁怀, 秦雪苹, 田一博, 赵青蓝, Juhee Jang, 王一诺, 谷猛, 张莉莉, 邵敏华. 金属有机框架-离子液体混合催化剂用于电化学还原二氧化碳生成甲烷[J]. 催化学报, 2022, 43(7): 1687-1696. |
[3] | 陈杨屾, 阚淼, 燕帅, 张俊波, 刘坤豪, 严雅琴, 关安翔, 吕希蒙, 钱林平, 郑耿锋. 类空气浓度的二氧化碳的高效电还原[J]. 催化学报, 2022, 43(7): 1703-1709. |
[4] | 汪露, 戚朝荣, 熊文芳, 江焕峰. 多组分反应策略将二氧化碳固定为氨基甲酸酯的研究进展[J]. 催化学报, 2022, 43(7): 1598-1617. |
[5] | 吕奉磊, 花伟, 邬慧蓉, 孙浩, 邓昭, 彭扬. 金属-有机配位结构与界面调控电催化二氧化碳还原[J]. 催化学报, 2022, 43(6): 1417-1432. |
[6] | 何铭, 徐冰君, 陆奇. 结合原位拉曼光谱与反应性研究锡与氧化锡催化剂电催化二氧化碳还原中表面物种的作用[J]. 催化学报, 2022, 43(6): 1473-1477. |
[7] | 赵振龙, 边辑, 赵丽娜, 吴红君, 徐帅, 孙磊, 李志君, 张紫晴, 井立强. 2D ZnMOF/BiVO4 S型异质结的构建及其可见光催化还原CO2性能[J]. 催化学报, 2022, 43(5): 1331-1340. |
[8] | Georgia Papanikolaou, Gabriele Centi, Siglinda Perathoner, Paola Lanzafame. 变革性催化过程生产可再生燃料: 展望和挑战[J]. 催化学报, 2022, 43(5): 1194-1203. |
[9] | 何杰, 王选东, 金尚彬, 刘兆清, 朱明山. 二维非金属的石墨相氮化碳/共价三嗪骨架异质结构材料用于高效和高选择性光催化二氧化碳还原[J]. 催化学报, 2022, 43(5): 1306-1315. |
[10] | 王旺银. 从液态阳光人工光合成淀粉[J]. 催化学报, 2022, 43(4): 895-897. |
[11] | 张博禹, 石家福, 赵阳, 王涵, 储子仪, 陈裕, 吴振华, 姜忠义. 基于扩散强化的Pickering界面生物催化系统构建及CO2矿化过程研究[J]. 催化学报, 2022, 43(4): 1184-1191. |
[12] | 付阳, 谢起贤, 武琳晓, 罗景山. 不同预处理的氧化亚铜纳米线电极诱导的晶面效应提升电化学CO2还原为多碳产物[J]. 催化学报, 2022, 43(4): 1066-1073. |
[13] | 王琳琳, 李欣, 郝磊端, 洪崧, Alex W. Robertson, 孙振宇. 超细氧化铜纳米颗粒修饰二维金属有机框架协同增强二氧化碳电化学还原生成乙烯[J]. 催化学报, 2022, 43(4): 1049-1057. |
[14] | 王集杰, Jittima Meeprasert, 韩哲, 王欢, 冯振东, 汤驰洲, 沙峰, 唐珊, 李冠娜, Evgeny A. Pidko, 李灿. TiO2负载的高分散Cd团簇催化剂高效催化CO2加氢制甲醇[J]. 催化学报, 2022, 43(3): 761-770. |
[15] | 苗昱聪, 邵明飞. 光电催化用于高附加值化学品合成[J]. 催化学报, 2022, 43(3): 595-610. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||