催化学报 ›› 2022, Vol. 43 ›› Issue (7): 1830-1841.DOI: 10.1016/S1872-2067(21)64027-5
朱纯a,b, 梁锦霞a,b,*(), 王阳刚b, 李隽b,c,#(
)
收稿日期:
2021-12-12
接受日期:
2021-12-30
出版日期:
2022-07-18
发布日期:
2022-05-20
通讯作者:
梁锦霞,李隽
基金资助:
Chun Zhua,b, Jin-Xia Lianga,b,*(), Yang-Gang Wangb, Jun Lib,c,#(
)
Received:
2021-12-12
Accepted:
2021-12-30
Online:
2022-07-18
Published:
2022-05-20
Contact:
Jin-Xia Liang, Jun Li
About author:
Jun Li (Department of Chemistry, Tsinghua University) was invited to join the 5th and 6th Editorial Board of Chin. J. Catal. He received a PhD degree from Chinese Academy of Sciences in 1992 and then did postdoctoral research in Siegen University (Germany) and The Ohio State University (USA) from 1993 to 1997. He then worked as a Research Scientist, Senior Research Scientist, and Chief Scientist at The Ohio State University and Pacific Northwest National Laboratory (USA). He later joined the faculty at Tsinghua University as a ChangJiang Chair Professor. He works in the field of relativistic quantum chemistry, computational catalysis and cluster science, with more than 400 publications and some 40000 citations.
Supported by:
摘要:
单原子催化剂是一类新型的环境友好催化材料, 在能源有效利用和环境保护中发挥着至关重要的作用. 发展廉价高效的贵金属催化剂具有十分重要的科学意义和实用价值. 近年来, 非贵金属部分或者全部取代贵金属的研究也备受关注, 成为催化领域的研究热点之一. MXene是由MAX相刻蚀得到的新型类石墨烯结构. MAX相的分子式为Mn+1AXn (n = 1, 2, 3), 其中M代表前过渡金属, A代表主族元素, X代表C和/或N元素. 由于M‒X具有较强的化学键能, A具有较活泼的化学活性, 因此, 可以通过选择性刻蚀作用将A从MAX相中移除, 从而得到类石墨烯的2D结构—MXene. 各类MXenes二维材料因具有广泛的应用价值和较好的物理化学性能而引起了人们的广泛关注, 尤其在单原子催化方面, MXenes表现出巨大的应用潜力.
本文选取氧功能化的Ti2C (Ti2CO2) MXene二维材料为载体, 系统研究了其负载的金属单原子催化剂(SACs)的稳定性和催化活性. 通过筛选周期表第8‒11族过渡金属M1/Ti2CO2 (M = Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Os, Ir, Pt, Au), 筛选出了一种新的非贵金属单原子催化剂Fe1/Ti2CO2, 发现其对CO氧化反应具有极高的催化活性. 基于密度泛函理论(DFT)计算, 使用VASP从头算模拟软件对上述体系进行了结构优化以及性质的计算, 选取了广义梯度近似(GGA)中的PBE泛函, 采用投影缀加平面波(PAW)方法描述体系中电子-离子的相互作用. 计算结果表明, O2和CO分子易于在Fe1/Ti2CO2表面的Fe1单原子上吸附活化. 基于O2和CO分子不同的吸附构型, 对Fe1/Ti2CO2催化CO氧化包括Langmuir-Hinshelwood (L-H), Eley-Rideal (E-R), Mars-van Krevelen (MvK), 三分子Eley-Rideal (TER)和三分子Langmuir-Hinshelwood (TLH)可能的五种反应机理进行了理论研究. 结果表明, L-H, E-R, Mvk, TER和TLH反应的决速步骤均为形成第一个CO2分子的过程, 其活化能分别为0.95, 0.77, 2.27, 0.98和0.20 eV, 而第二个CO2分子的生成反应势垒都很低. 根据计算得到的不同反应路径及其反应能, TLH机理的决速步势垒低至0.20 eV, 表明CO氧化在Fe1/Ti2CO2表面的反应极易通过TLH机理进行. 另外, 对反应过程中Fe单原子价态的分析发现, 铁单原子的高反应活性与其在CO氧化反应过程中的价态变化促进反应过程中的电子转移有关. 上述研究表明, Fe1/Ti2CO2 MXene是一类非常有潜力的二维非贵金属低温单原子催化剂材料.
朱纯, 梁锦霞, 王阳刚, 李隽. MXene负载的非贵金属单原子催化剂催化CO氧化反应[J]. 催化学报, 2022, 43(7): 1830-1841.
Chun Zhu, Jin-Xia Liang, Yang-Gang Wang, Jun Li. Non-noble metal single-atom catalyst with MXene support: Fe1/Ti2CO2 for CO oxidation[J]. Chinese Journal of Catalysis, 2022, 43(7): 1830-1841.
Fig. 1. Structure configurations and the calculated relative energies of functionalized MXenes with different locations of the surface atoms: top views of I-TiC2O2 (a), II-TiC2O2 (b), and III-TiC2O2 (c) side views of I-TiC2O2 (a1), II-TiC2O2 (b1), and III- TiC2O2 (c1), respectively.
Fig. 2. (a) The calculated binding energies of metal (M) single atoms in each of the most stable SACs of M1/TiC2O2. (b) Side and top views of the optimized geometry of Fe1/Ti2CO2. (c) The TDOS of Fe1/Ti2CO2 and PDOS of Fe 3d (black) and O 2p (red) states. (d) Side and top views of PEDD, yellow and blue refer to an increase and decrease of the electron density, respectively. The Fermi level (EF) is set to zero and isovalue = ±0.006 a.u.
Metal | BEM (eV) | Bader charge (|e|) | ||||
---|---|---|---|---|---|---|
TH_a | TH_b | Top_O | ||||
Fe | -3.60 | -2.88 | — | 0.977 | ||
Co | -3.34 | -2.80 | -1.69 | 0.872 | ||
Ni | -3.05 | -2.37 | -1.78 | 0.728 | ||
Cu | -1.98 | -1.75 | -1.48 | 0.781 | ||
Ru | -3.45 | -2.19 | -1.55 | 0.668 | ||
Rh | -2.69 | -2.09 | -1.56 | 0.498 | ||
Pd | -1.41 | -1.44 | -1.23 | 0.430 | ||
Ag | -0.93 | -0.90 | -0.72 | 0.709 | ||
Os | -3.23 | -1.90 | — | 0.720 | ||
Ir | -2.72 | -1.83 | -1.36 | 0.401 | ||
Pt | -1.78 | -1.49 | -1.40 | 0.252 | ||
Au | -0.11 | -0.11 | -0.31 | 0.342 |
Table 1 The calculated binding energies for metals (M) single atoms located at different sites of the TiC2O2 surfaces of M1/TiC2O2, the Bader charges (|e|) of metals in each of the most stable M1/TiC2O2.
Metal | BEM (eV) | Bader charge (|e|) | ||||
---|---|---|---|---|---|---|
TH_a | TH_b | Top_O | ||||
Fe | -3.60 | -2.88 | — | 0.977 | ||
Co | -3.34 | -2.80 | -1.69 | 0.872 | ||
Ni | -3.05 | -2.37 | -1.78 | 0.728 | ||
Cu | -1.98 | -1.75 | -1.48 | 0.781 | ||
Ru | -3.45 | -2.19 | -1.55 | 0.668 | ||
Rh | -2.69 | -2.09 | -1.56 | 0.498 | ||
Pd | -1.41 | -1.44 | -1.23 | 0.430 | ||
Ag | -0.93 | -0.90 | -0.72 | 0.709 | ||
Os | -3.23 | -1.90 | — | 0.720 | ||
Ir | -2.72 | -1.83 | -1.36 | 0.401 | ||
Pt | -1.78 | -1.49 | -1.40 | 0.252 | ||
Au | -0.11 | -0.11 | -0.31 | 0.342 |
Fig. 3. (a) The optimized geometry of CO adsorbed on Fe1/Ti2CO2 (top and side view). (b) calculated PEDD, with yellow and blue color referring to an increase and decrease of the electron density, respectively (isovalue = ±0.006 a.u.). (c) PDOS of Fe 3d (black) and C 2p (red) states, with the Fermi level set to zero. O atom (pink) in CO, C atom (light blue) in CO.
Fig. 4. (a) The optimized geometry of O2 adsorbed on Fe1/Ti2CO2 (top and side view). (b) Calculated PEDD, with yellow and blue color referring to an increase and decrease of the electron density, respectively (isovalue = ±0.006 a.u.). (c) PDOS of Fe 3d (black) and O 2p (red) states, with the Fermi level set to zero.
Fig. 5. The optimized geometries of CO and/or O2 molecules co-adsorbed on Fe1/Ti2CO2 (top and side view): (a) for two CO molecules, (b) for two CO molecules, (c) for a CO and an O2 molecule, (d) for CO and O2 molecules, (e) for two CO and an O2 molecule Calculated PEDD, (f) for CO and O2 molecules, with yellow and blue color referring to an increase and decrease of the electron density, respectively (isovalue = ±0.006 a.u.).
Fig. 6. Calculated energy profile and optimized geometries of the intermediates and transition states for formation of the first CO2 catalyzed by Fe1/Ti2CO2 via L-H mechanism, in which the TS is marked with redlines and the relative energies and bond distances are given in eV and Å, respectively.
Fig. 7. Calculated energy profile and optimized geometries of the intermediates and transition states for the formation of the second CO2 catalyzed by Fe1/Ti2CO2 via L-H mechanism, in which the TS is marked with redlines and the relative energies and bond distances are in eV and Å, respectively.
Fig. 8. Calculated energy profile and optimized geometries of the intermediates and transition states for the formation of the first CO2 catalyzed by Fe1/Ti2CO2 via E-R mechanism, where the TS is marked with redlines and the relative energies and bond distances are in eV and Å, respectively.
Fig. 9. Calculated energy profile and optimized geometries of the intermediates and transition states for the formation of the second CO2 catalyzed by Fe1/Ti2CO2 via E-R mechanism, where the TS is marked with redlines and the relative energies and bond distances are in eV and Å, respectively.
Fig. 10. Calculated energy profile and optimized geometries of the intermediates and transition states for the formation of the first CO2 catalyzed by Fe1/Ti2CO2 via MvK mechanism, where the TS is marked with redlines and the relative energies and bond distances are in eV and Å, respectively.
Fig. 11. Calculated energy profile and optimized geometries of the corresponding stationary points for CO oxidation catalyzed by Fe1/Ti2CO2 via the TER step mechanism, where the TS is marked with redlines and the relative energies and bond distances are in eV and Å, respectively.
Fig. 12. Calculated energy profile and optimized geometries of the intermediates and transition statesfor CO oxidation catalyzed by Fe1/Ti2CO2 via TLH mechanism, where the TS is marked with redlines and the relative energies and bond distances are in eV and Å, respectively.
Fig. 13. Calculated Bader charges of Fe1 SAs, the adsorbed O2 and C atoms of CO for CO oxidation in the structures of elementary steps in TLH mechanism.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[3] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[4] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[5] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[6] | 程璐, 陈许宁, 胡培君, 曹宵鸣. 双氧水对于单核铜分子筛催化甲烷直接氧化制甲醇反应性能的利弊[J]. 催化学报, 2023, 51(8): 135-144. |
[7] | 刘赵春, 宗雪, Dionisios G. Vlachos, Ivo A. W. Filot, Emiel J. M. Hensen. 金属掺杂SnO2电化学还原CO2制甲酸的计算研究[J]. 催化学报, 2023, 50(7): 249-259. |
[8] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[9] | 耿仕鹏, 陈利明, 陈海鑫, 王毅, 丁朝斌, 蔡丹丹, 宋树芹. 揭示层状晶态CoMoO4的水裂解电催化机制: 从晶面选择到活性位点设计的理论研究[J]. 催化学报, 2023, 50(7): 334-342. |
[10] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
[11] | 黄正清, 贺姝玥, 班涛, 高新, 许云华, 常春然. Pt-Cu合金催化剂上甲烷无氧偶联的机理与微观动力学研究: 从单原子位点到单团簇位点[J]. 催化学报, 2023, 48(5): 90-100. |
[12] | 井会娟, 龙军, 李欢, 傅笑言, 肖建平. 电催化硝酸盐还原合成氨电势相关性的计算见解[J]. 催化学报, 2023, 48(5): 205-213. |
[13] | 赵志月, 蒋志伟, 黄一哲, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, 罗惠霞, 严凯. 富空穴CoSi合金无溶剂无碱醇氧化[J]. 催化学报, 2023, 48(5): 175-184. |
[14] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[15] | Sue-Faye Ng, 陈星竹, Joel Jie Foo, 熊墨, Wee-Jun Ong. 2D氮化碳: 通过调节非金属硼掺杂C3N5阐明宽酸性及碱性pH范围的光催化析氢的反应机理[J]. 催化学报, 2023, 47(4): 150-160. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||