催化学报 ›› 2022, Vol. 43 ›› Issue (11): 2850-2857.DOI: 10.1016/S1872-2067(22)64098-1

• 论文 • 上一篇    下一篇

利用第一性原理模拟研究Li和LiO2的溶剂化结构和动力学及其在非水有机电解质溶剂中的转化

Behnaz Rahmani Didara, Axel Großa,b,*()   

  1. a乌尔姆大学理论化学研究所, 乌尔姆, 德国
    b乌尔姆赫尔姆霍兹研究所电化学储能, 乌尔姆, 德国
  • 收稿日期:2021-12-26 接受日期:2022-04-04 出版日期:2022-11-18 发布日期:2022-10-20
  • 通讯作者: Axel Groß

Solvation structure and dynamics of Li and LiO2 and their transformation in non-aqueous organic electrolyte solvents from first-principles simulations

Behnaz Rahmani Didara, Axel Großa,b,*()   

  1. aInstitute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
    bHelmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11 D-89081 Ulm, Germany
  • Received:2021-12-26 Accepted:2022-04-04 Online:2022-11-18 Published:2022-10-20
  • Contact: Axel Groß

摘要:

利用密度泛函理论计算和从头算分子动力学(AIMD)模拟研究了三种有机电解质中Li+和LiO2在O2还原时的溶剂化、扩散和转化. 这些过程对锂空气电池的性能至关重要. 除详细研究溶剂化壳层结构外, 还利用AIMD模拟推导了扩散率, 并与Blue-Moon系综方法一起探索Li+和O2‒形成LiO2以及2LiO2歧化为Li2O2+O2. 通过对比模拟结果和气相计算结果, 研究电解质对这些反应的影响, 结果表明, 对于参与这些反应的离子物种, 电解质的影响更为显著.

关键词: Li-空气电池, 氧化锂, 氧还原, 密度泛函理论, 从头算分子动力学, 溶剂化, 扩散, 歧化

Abstract:

Density functional theory calculations together with ab initio molecular dynamics (AIMD) simulations have been used to study the solvation, diffusion and transformation of Li+ and LiO2 upon O2 reduction in three organic electrolytes. These processes are critical for the performance of Li-air batteries. Apart from studying the structure of the solvation shells in detail, AIMD simulations have been used to derive the diffusivity and together with the Blue Moon ensemble approach to explore LiO2 formation from Li+ and O2- and the subsequent disproportionation of 2LiO2 into Li2O2 + O2. By comparing the results of the simulations to gas phase calculations, the impact of electrolytes on these reactions is assessed which turns out to be more pronounced for the ionic species involved in these reactions.

Key words: Li-air batteries, Li oxide, Oxygen reduction, Density functional theory, Ab initio molecular dynamics, Solvation, Diffusivity, Disproportionation