催化学报 ›› 2024, Vol. 58: 37-85.DOI: 10.1016/S1872-2067(23)64581-4

• 综述 • 上一篇    下一篇

释放多孔纳米结构的活力: 可持续电催化水分解

罗健颖a,b, 傅捷a,b, 叶丰铭a,b, 梁汉锋c, 王伟俊a,b,c,d,e,*()   

  1. a厦门大学马来西亚分校能源与化工学院, 雪兰莪州, 马来西亚
    b厦门大学马来西亚分校, 纳米能源与催化技术卓越中心(CONNECT), 雪兰莪州, 马来西亚
    c厦门大学化学与化工学院, 固体表面物理化学国家重点实验室, 福建厦门361005, 中国
    d厦门大学古雷创新学院, 福建漳州363200, 中国
    e厦门大学深圳研究院, 广东深圳518057, 中国
  • 收稿日期:2023-08-24 接受日期:2023-11-13 出版日期:2024-03-18 发布日期:2024-03-28
  • 通讯作者: *电子信箱: weejun.ong@xmu.edu.my (王伟俊).
  • 基金资助:
    国家自然科学基金(22202168);广东省基础与应用基础研究基金会(2021A1515111019);厦门大学固体表面物理化学国家重点实验室(2023X11);厦门大学马来西亚研究生奖学金(IENG/0038);厦门大学马来西亚研究基金(ICOE/0001);厦门大学马来西亚研究基金(XMUMRF/2021-C8/IENG/0041)

Unleashing the versatility of porous nanoarchitectures: A voyage for sustainable electrocatalytic water splitting

Jian Yiing Loha,b, Joel Jie Fooa,b, Feng Ming Yapa,b, Hanfeng Liangc, Wee-Jun Onga,b,c,d,e,*()   

  1. aSchool of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
    bCenter of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
    cState Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
    dGulei Innovation Institute, Xiamen University, Zhangzhou 363200, Fujian, China
    eShenzhen Research Institute of Xiamen University, Shenzhen 518057, Guangdong, China
  • Received:2023-08-24 Accepted:2023-11-13 Online:2024-03-18 Published:2024-03-28
  • Contact: *E-mail: weejun.ong@xmu.edu.my (W.-J. Ong).
  • About author:Wee-Jun Ong received his B.Eng. and Ph.D. in chemical engineering from Monash University. He is a Professor and Assistant Dean in School of Energy and Chemical Engineering at Xiamen University Malaysia. Starting from 2021, he serves as the Director of Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT). Previously, he was a scientist at Agency for Science, Technology and Research (A*STAR), Singapore. In 2019, he was a visiting scientist at Technische Universität Dresden and a visiting professor at Lawrence Berkeley National Laboratory. His research interests include nanomaterials for energy storage devices, photocatalytic, photoelectrocatalytic, and electrochemical H2O splitting, CO2 reduction and N2 fixation. For more details, refer to https://sites.google.com/site/wjongresearch/.
  • Supported by:
    National Natural Science Foundation of China(22202168);Guangdong Basic and Applied Basic Research Foundation(2021A1515111019);State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University(2023X11);Xiamen University Malaysia Investigatorship(IENG/0038);Xiamen University Malaysia Research Fund(ICOE/0001);Xiamen University Malaysia Research Fund(XMUMRF/2021-C8/IENG/0041)

摘要:

电化学整体水分解(OWS)作为一种很有应用前景的能源转换技术, 可用于生产清洁的可再生氢燃料, 引起了人们的广泛关注. 然而, 水分解反应的半反应, 即析氧反应(OER), 因动力学缓慢、水分解热力学势垒高和能量消耗大等问题制约了OWS的广泛应用. 研究发现, 采用地球储量丰富的元素设计的多孔材料可以显著提高活性位点数量及其可及性, 增大比表面积, 优化反应物的吸附/脱附, 改善传质, 进而表现出较好的电催化活性. 因此, 系统梳理总结多孔纳米材料在电催化分解水领域的研究进展具有重要的意义.

本文综述了近年来用于析氢反应, OER和OWS的多孔电催化剂的研究进展. 聚焦于合成策略的最新进展, 并结合多孔结构在电催化剂中的独特作用进行了讨论. 概述了各种新兴的多孔电催化剂改性策略, 包括结构工程、相工程、缺陷工程和应变工程; 重点介绍了合成方法、多孔材料性能提升、机理理解、集成实验、水分解的理论研究和先进的改性策略, 并提出了合成工艺. 特别总结了结构-活性关系的研究成果, 为设计和改性具有独特性能的多孔材料提供参考.

最后, 本文强调了当前多孔电催化剂所面临的科学挑战和未来发展方向, 旨在为推动多孔电催化剂在电化学水分解领域的应用和发展提供借鉴.

关键词: 多孔材料, 电催化, 析氢反应, 析氧反应, 水分解

Abstract:

Electrochemical overall water splitting (OWS) has drawn much research fascination as a promising technology for energy conversion to produce clean hydrogen fuel as sustainable chemical resources. However, half reaction of the water splitting reaction, which is oxygen evolution reaction (OER) is the main challenge due to the sluggish kinetics and large thermodynamic barrier. Porous-based materials can markedly enhance the accessibility of active sites, increase specific surface area and optimize the adsorption/desorption of reactants. The enhanced activity arising from the porous materials is attributed to the increase in active sites and improved mass transfer. Herein, the recent research advances made in porous electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and OWS are reviewed. This review focuses on the recent advancements in the synthesis strategies, incorporated with the unique roles of porous structure in electrocatalysts are discussed. For boosting the activity, various emerging modification strategies on porous electrocatalysts, covering structure engineering, phase engineering, defect engineering and strain engineering are presented. This review emphasizes on the synthesis methods, how porous materials improve the performance, mechanistic understanding, integrated experiments, theoretical studies in water splitting, advanced modification strategies and proposed synthesis processes. Specially, the structural-activity relationship gives insights into designing and modifying the porous-based materials with unique properties. Finally, the current science challenges and direction for the future development of porous electrocatalysts are highlighted.

Key words: Porous materials, Electrocatalysis, Hydrogen evolution reaction, Oxygen evolution reaction, Water splitting