催化学报 ›› 2024, Vol. 58: 25-36.DOI: 10.1016/S1872-2067(23)64605-4
陈丽丽a, 郝彦衡a, 褚健意a, 刘松b, 白凤华a,*(), 罗文豪a,*(
)
收稿日期:
2023-11-02
接受日期:
2024-01-15
出版日期:
2024-03-18
发布日期:
2024-03-28
通讯作者:
*电子信箱: w.luo@imu.edu.cn (罗文豪),f.h.bai@imu.edu.cn (白凤华).
基金资助:
Lili Chena, Yanheng Haoa, Jianyi Chua, Song Liub, Fenghua Baia,*(), Wenhao Luoa,*(
)
Received:
2023-11-02
Accepted:
2024-01-15
Online:
2024-03-18
Published:
2024-03-28
Contact:
*E-mail: w.luo@imu.edu.cn (W. Luo),f.h.bai@imu.edu.cn (F. Bai).
About author:
Fenghua Bai (College of Chemistry and Chemical Engineering, Inner Mongolia University) obtained her Ph.D. in 2008 from Inner Mongolia University (China). Since 2008, she has been working in Inner Mongolia University as an associate professor. In 2012, she was a visiting scholar at University of Exeter in UK. She has been a vice dean of School of Chemistry and Chemical Engineering, Inner Mongolia University since 2015. She was appointed as an associate editor of Mater. Today Sustain. since 2023. Her research interests lie in the development of new catalytic materials for the sustainable production of chemicals from biomass, carbon dioxide, syngas or waste streams.Supported by:
摘要:
氨(NH3)是现代工业的重要化工原料之一, 因其具有较高的能量密度、便于运输和储存的特点而被认为是一种非常有前景的储氢材料和可再生能源载体. 电催化硝酸根还原(NO3RR)是一种理想的绿色合成氨策略, 同时可应用于废水中硝酸根(NO3-)污染的去除. 然而, NO3RR涉及多个电子和质子转移过程, 且存在析氢反应(HER)等竞争反应, 导致NO3RR的法拉第效率(FE)和选择性较低. 近年来, 精准构筑NO3RR电催化剂, 实现高效合成氨逐步成为电催化领域的研究热点. 其中, 铁/铜基催化剂因其优异的催化性能和经济可行性而备受关注. 因此, 对近年来具有代表性的铁/铜基催化剂的研究进展进行总结是非常必要的.
本文首先简述了电化学NO3RR合成氨可能发生的反应路径, 主要围绕铁/铜基电催化剂在NO3RR中可能涉及的反应历程和相应的中间体. 在此基础上, 针对不同的反应机理系统归纳了三种催化剂设计策略, 包括单原子催化剂策略、双金属催化剂策略以及仿生催化剂策略等. 随后, 重点评析和讨论了原位实时表征技术, 如原位电化学质谱、原位X射线吸收光谱和原位红外/拉曼等, 在电催化NO3RR合成氨研究领域中的代表性应用案例, 并阐明了原位表征技术的发展和联用对于揭示NO3RR本征活性位和动态机理的关键作用. 最后, 系统总结了当前NO3RR所面临的核心挑战并对其未来的研究机遇和发展方向进行了展望, 包括高效催化剂的关键描述符和设计策略, 探究固-液界面的前沿原位表征技术开发, 以及将NO3RR与绿色反应(如二氧化碳转化和生物质转化等)高效耦联制备高值化学品.
综上所述, 尽管电催化NO3RR合成氨目前仍面临诸多挑战, 随着实验方案、科学理论和原位表征技术的不断发展, 未来将会出现更多高效且稳定的NO3RR催化剂. 本文旨在为高效电催化剂的理性开发, 深入理解其动态反应机理与催化剂构效关系提供参考.
陈丽丽, 郝彦衡, 褚健意, 刘松, 白凤华, 罗文豪. 电催化硝酸根还原合成氨: 关于铁/铜基催化剂的研究展望[J]. 催化学报, 2024, 58: 25-36.
Lili Chen, Yanheng Hao, Jianyi Chu, Song Liu, Fenghua Bai, Wenhao Luo. Electrocatalytic nitrate reduction to ammonia: A perspective on Fe/Cu-containing catalysts[J]. Chinese Journal of Catalysis, 2024, 58: 25-36.
Cathode | Electrolyte | pH | Faradaic efficiency (%) | Yield | Applied potential | Ref. |
---|---|---|---|---|---|---|
Fe-N-C | 0.50 mol L‒1 KNO3 + 0.1 mol L‒1 K2SO4 | 7 | 75 | 0.46 mmol cm‒2 h‒1 | -0.66 V vs. RHE | [ |
Fe-N2O2 | 0.5 mol L‒1 KNO3 + 0.1 mol L‒1 K2SO4 | 7 | 92 | 9.2 mg h-1 cm-2 | -0.68 V vs. RHE | [ |
Cu-N-C | 0.1 mol L‒1 KOH + 0.1 mol L‒1 KNO3 | 14 | 84.7 | 4.5 mg cm-2 h-1 | -1.00 V vs. RHE | [ |
Cu-N-C | 0.5 mol L‒1 Na2SO4 + 50 mg L‒1 NO3- | 9.81 | — | 9.23 mg h‒1 mgcat‒1 | -1.50 V vs. SCE | [ |
Ni1Cu-SAA | 0.5 mol L‒1 K2SO4 + 200 ppm NO3- | 7 | ~100 | 326.7 μmol h-1 cm-2 | -0.55 V vs. RHE | [ |
Cu/Ni-NC | 0.5 mol L‒1 Na2SO4 + 100 ppm NaNO3 | 9.81 | 97.28 | 5480 mg h-1 mgcat-1 cm-2 | -0.70 V vs. RHE | [ |
Cu50Ni50 | 1 mol L‒1 KOH + 100 mmol L‒1 KNO3 | 14 | ∼95 | — | -0.20 V vs. RHE | [ |
PdCu/Cu2O | 0.5 mol L‒1 Na2SO4 + 100 ppm NO3- | 9.82 | 94.32 | 0.190 mmol h-1 cm-2 | -0.80 V vs. RHE | [ |
Co-Fe@Fe2O3 | 50 ppm NaNO3 + 0.1 mol L‒1 Na2SO4 | 7 | 85.2 ± 0.6 | 1505.9 μg h-1 cm-2 | -0.745 V vs. RHE | [ |
Ru1Cu10/rGO | 0.1 mol L‒1 KNO3 + 1 mol L‒1 KOH | 14 | 98 | 0.38 mmol cm-2 h-1 | -0.05 V vs. RHE | [ |
Cu/Fe-TiO2 | 0.5 mol L‒1 Na2SO4 + 50 ppm NO3- | 7 | 91.2 | 505.73 μg h-1 cm-2 | -1.40 V vs. SCE | [ |
Fe/Cu-HNG | 1 mol L‒1 KOH + 0.1 mol L‒1 KNO3 | 14 | 92.51 | 1.08 mmol h-1 mg-1 | -0.50 V vs. RHE | [ |
FeNPs@MXene | 0.5 mol L‒1 Na2SO4 + 100 mg L-1 NO3- | 7 | — | 0.51 mg h-1 cm-2 | -0.95 V vs. RHE | [ |
Cu50Co50 | 0.1 mol L‒1 KNO3 +0.5 mol L‒1 K2SO4 | 7 | 100 ± 1 | 4.8 mmol cm-2 h-1 | -0.20 V vs. RHE | [ |
FeMo-N-C | 0.05 mol L‒1 PBS + 0.16 mol L‒1 NO3- | 6.3 | 94% | 18.0 μmol cm-2 h-1 | -0.45 V vs. RHE | [ |
TiO2 NTs/CuOx | 0.5 mol L‒1 Na2SO4 + 100 ppm NO3- | 7 | 92.23 | 241.81 μg h-1 cm-2 | -0.75V vs. RHE | [ |
CuCoSP | 0.01 mol L‒1 NO3- + 0.1 mol L‒1 KOH | 13 | 93.3 ± 2.1 | 1.17 mmol cm-2 h-1 | -0.175 V vs. RHE | [ |
Cu-PTCDA | 0.1 mol L‒1 PBS + 500 ppm NO3- | 7 | 77 ± 3 | 436 ± 85 μg h-1 cm-2 | -0.40 V vs. RHE | [ |
Table 1 Fe/Cu-containing catalysts for electrocatalytic NO3RR to NH3.
Cathode | Electrolyte | pH | Faradaic efficiency (%) | Yield | Applied potential | Ref. |
---|---|---|---|---|---|---|
Fe-N-C | 0.50 mol L‒1 KNO3 + 0.1 mol L‒1 K2SO4 | 7 | 75 | 0.46 mmol cm‒2 h‒1 | -0.66 V vs. RHE | [ |
Fe-N2O2 | 0.5 mol L‒1 KNO3 + 0.1 mol L‒1 K2SO4 | 7 | 92 | 9.2 mg h-1 cm-2 | -0.68 V vs. RHE | [ |
Cu-N-C | 0.1 mol L‒1 KOH + 0.1 mol L‒1 KNO3 | 14 | 84.7 | 4.5 mg cm-2 h-1 | -1.00 V vs. RHE | [ |
Cu-N-C | 0.5 mol L‒1 Na2SO4 + 50 mg L‒1 NO3- | 9.81 | — | 9.23 mg h‒1 mgcat‒1 | -1.50 V vs. SCE | [ |
Ni1Cu-SAA | 0.5 mol L‒1 K2SO4 + 200 ppm NO3- | 7 | ~100 | 326.7 μmol h-1 cm-2 | -0.55 V vs. RHE | [ |
Cu/Ni-NC | 0.5 mol L‒1 Na2SO4 + 100 ppm NaNO3 | 9.81 | 97.28 | 5480 mg h-1 mgcat-1 cm-2 | -0.70 V vs. RHE | [ |
Cu50Ni50 | 1 mol L‒1 KOH + 100 mmol L‒1 KNO3 | 14 | ∼95 | — | -0.20 V vs. RHE | [ |
PdCu/Cu2O | 0.5 mol L‒1 Na2SO4 + 100 ppm NO3- | 9.82 | 94.32 | 0.190 mmol h-1 cm-2 | -0.80 V vs. RHE | [ |
Co-Fe@Fe2O3 | 50 ppm NaNO3 + 0.1 mol L‒1 Na2SO4 | 7 | 85.2 ± 0.6 | 1505.9 μg h-1 cm-2 | -0.745 V vs. RHE | [ |
Ru1Cu10/rGO | 0.1 mol L‒1 KNO3 + 1 mol L‒1 KOH | 14 | 98 | 0.38 mmol cm-2 h-1 | -0.05 V vs. RHE | [ |
Cu/Fe-TiO2 | 0.5 mol L‒1 Na2SO4 + 50 ppm NO3- | 7 | 91.2 | 505.73 μg h-1 cm-2 | -1.40 V vs. SCE | [ |
Fe/Cu-HNG | 1 mol L‒1 KOH + 0.1 mol L‒1 KNO3 | 14 | 92.51 | 1.08 mmol h-1 mg-1 | -0.50 V vs. RHE | [ |
FeNPs@MXene | 0.5 mol L‒1 Na2SO4 + 100 mg L-1 NO3- | 7 | — | 0.51 mg h-1 cm-2 | -0.95 V vs. RHE | [ |
Cu50Co50 | 0.1 mol L‒1 KNO3 +0.5 mol L‒1 K2SO4 | 7 | 100 ± 1 | 4.8 mmol cm-2 h-1 | -0.20 V vs. RHE | [ |
FeMo-N-C | 0.05 mol L‒1 PBS + 0.16 mol L‒1 NO3- | 6.3 | 94% | 18.0 μmol cm-2 h-1 | -0.45 V vs. RHE | [ |
TiO2 NTs/CuOx | 0.5 mol L‒1 Na2SO4 + 100 ppm NO3- | 7 | 92.23 | 241.81 μg h-1 cm-2 | -0.75V vs. RHE | [ |
CuCoSP | 0.01 mol L‒1 NO3- + 0.1 mol L‒1 KOH | 13 | 93.3 ± 2.1 | 1.17 mmol cm-2 h-1 | -0.175 V vs. RHE | [ |
Cu-PTCDA | 0.1 mol L‒1 PBS + 500 ppm NO3- | 7 | 77 ± 3 | 436 ± 85 μg h-1 cm-2 | -0.40 V vs. RHE | [ |
Fig. 3. (a) NH3 yield rate at different partial current density for different catalysts (NC, FeNP/NC and Fe SAC). The inset shows schematic model of Fe-N4. Adapted with permission [40]. Copyright 2021, Springer Nature. (b) Time profile of NH4+ concentration for different Cu-based SAC and benchmark catalysts at ?1.5 V vs. SCE. The inset shows schematic model of Cu-N4. Adapted with permission [25]. Copyright 2022, Elsevier. (c) The electrocatalytic performance of Cu-NC, Ni-NC and Cu/Ni-NC in electrocatalytic NO3RR to NH3. Adapted with permission [44]. Copyright 2023, Wiley-VCH GmbH. (d) The impact of Cu-Ni alloy ratio on the NO3RR activity and the adsorption intermediates. Adapted with permission [19]. Copyright 2020, American Chemical Society. (e) The electrocatalytic performance of different Cu-Pd bimetallic and benchmark catalysts in NO3RR. Adapted with permission [45]. Copyright 2021, Elsevier. (f) The electrocatalytic performance of different Cu-Fe bimetallic and benchmark catalysts in NO3RR at ?1.4 V vs. SCE. Adapted with permission [48]. Copyright 2023, Elsevier.
Fig. 4. (a) Schematic illustration of FeNPs@MXene for NO3RR. Adapted with permission [50]. Copyright 2022, American Chemical Society. (b) Schematic diagram of Ni foam supported CuCo nanosheets via a one-step electro-deposition method. Adapted with permission [51]. Copyright 2022, Springer Nature. (c) Schematic illustration of the Cu/Co-based binary catalyst’s tandem catalytic process. Adapted with permission [53]. Copyright 2022, Springer Nature.
Fig. 5. (a) DEMS results of the Cu/Cu2O catalyst in NO3RR. Adapted with permission [37]. Copyright 2019, Wiley-VCH. (b) First-order derivatives of the operando XANES spectra recorded at different potentials in NO3RR. (c) Corresponding operando Cu K edge FT-EXAFS spectra at different potentials from fresh, 0.00 to -1.00 V vs. RHE. Adapted with permission [42]. Copyright 2022, American Chemical Society. (d) In situ ATR-FTIR spectra of Pd/NF obtained at -1.4 V vs. RHE in 0.1 mol L?1 NaNO3 solution. Adapted with permission [62]. Copyright 2023, Wiley-VCH. In situ Raman spectra of Ru1Cu10 (e) and Cu (f) during NO3RR at different potentials (V vs. RHE) in a 0.1 mol L?1 KNO3 + 1 mol L?1 KOH mixed solution. Adapted with permission [47]. Copyright 2023, Wiley-VCH.
Fig. 7. Radar charts of the electrocatalytic NO3RR performances of three catalyst strategies: Representative examples of single-atom catalysts [40?-42] (a), bimetallic catalysts [43,46,47] (b), and biomimetic catalysts (c) [51?-53].
|
[1] | 罗健颖, 傅捷, 叶丰铭, 梁汉锋, 王伟俊. 释放多孔纳米结构的活力: 可持续电催化水分解[J]. 催化学报, 2024, 58(3): 37-85. |
[2] | 屠振涛, 何晓洋, 刘璇, 熊登科, 左娟, 吴德礼, 汪建营, 陈作锋. 通过钨对镍活性位点的电子改性实现苯甲胺选择性氧化耦合制氢[J]. 催化学报, 2024, 58(3): 146-156. |
[3] | 郭一博, 薛圆媛, 周震. 铠甲催化剂助力锌-空气电池: 氮掺杂石墨烯上超薄碳封装铁镍合金增强氧电催化[J]. 催化学报, 2024, 58(3): 206-215. |
[4] | 李奇, 李杰浩, 白惠敏, 李发堂. 催化剂晶面工程在光/电催化中的研究进展[J]. 催化学报, 2024, 58(3): 86-104. |
[5] | 刘佳, 王式彬, 蔡锦福, 武立振, 刘云, 贺佳辉, 许在祥, 彭小革, 钟兴, 安亮, 王建国. 高活性方形氧化铅与可视化电解槽协同促进电催化臭氧生产[J]. 催化学报, 2024, 57(2): 80-95. |
[6] | 别泉泉, 尹海波, 王云龙, 苏海伟, 彭悦, 李俊华. Cu单原子与氧空位协同作用增强电催化CO2还原中C2液相产物活性[J]. 催化学报, 2024, 57(2): 96-104. |
[7] | 蔡豪, 陈芳, 胡程, 葛伟怡, 李彤, 张晓磊, 黄洪伟. 富含氧空位的Bi4O5Br2超薄纳米片用于高效压电催化生成过氧化氢[J]. 催化学报, 2024, 57(2): 123-132. |
[8] | 李伊萍, 王谭源, 姚璋懿, 陈麒安, 李箐. 非金属掺杂提升铂族金属电催化剂性能[J]. 催化学报, 2024, 56(1): 51-73. |
[9] | 齐宴宾, 朱以华, 江宏亮, 李春忠. 通过NiMo氧化物-CoMo氧化物混合物衍生催化剂中的界面相互作用促进甲醇到甲酸盐的电催化氧化[J]. 催化学报, 2024, 56(1): 139-149. |
[10] | 王毅, 王硕, 付云凡, 桑佳琪, 臧一鹏, 魏鹏飞, 李合肥, 汪国雄, 包信和. CuPc/FeNC双组分催化剂协同催化硝酸盐转化为氨[J]. 催化学报, 2024, 56(1): 104-113. |
[11] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[12] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[13] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[14] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[15] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||