催化学报 ›› 2024, Vol. 58: 15-24.DOI: 10.1016/S1872-2067(23)64617-0
Yaejun Baik, Kyeongjin Lee, Minkee Choi*()
收稿日期:
2023-10-29
接受日期:
2024-01-20
出版日期:
2024-03-18
发布日期:
2024-03-28
通讯作者:
*电子信箱: mkchoi@kaist.ac.kr (M. Choi).
Yaejun Baik, Kyeongjin Lee, Minkee Choi*()
Received:
2023-10-29
Accepted:
2024-01-20
Online:
2024-03-18
Published:
2024-03-28
Contact:
*mkchoi@kaist.ac.kr (M. Choi).
About author:
Minkee Choi received his B.S., M.S., and Ph.D. degrees in Chemistry from the Korea Advanced Institute of Science and Technology (KAIST) under the guidance of Prof. Ryong Ryoo. Following this, he worked as a postdoctoral research fellow in Chemical Engineering at UC Berkeley, under the supervision of Prof. Enrique Iglesia. In 2010, he joined the Department of Chemical and Biomolecular Engineering at KAIST as a faculty member and now he is a full professor. His current research interests are designing advanced materials for industrially relevant adsorption and catalytic applications, encompassing zeolites, carbons, polymers, and their composite materials.
摘要:
将生物质转化为可持续燃料和化学品对于解决环境问题、减少碳排放、增强能源安全以及促进经济和社会发展至关重要. 在众多生物质原料中, 来自不同来源的甘油三酯, 如植物油、动物脂肪和微藻油, 因其低氧含量和脂肪酸单元中的高度石蜡骨架, 与石油衍生烃的结构相似, 而特别适合生产可持续的烃燃料和化学品. 这意味着通过相对简单的催化转化过程, 就能有效地将甘油三酯转化为烃类产物.
本文概述了甘油三酯通过加氢过程转化为无氧燃料(如柴油和喷气燃料)以及润滑油基础油等高附加值产品的过程. 此外, 还根据反应机理讨论了所需催化剂的重要结构性质, 以及甘油三酯的不同脂肪酸组成对催化转化过程的影响.
Yaejun Baik, Kyeongjin Lee, Minkee Choi. 甘油三酯催化转化为柴油、喷气燃料和润滑油基础油[J]. 催化学报, 2024, 58: 15-24.
Yaejun Baik, Kyeongjin Lee, Minkee Choi. Catalytic conversion of triglycerides into diesel, jet fuel, and lube base oil[J]. Chinese Journal of Catalysis, 2024, 58: 15-24.
Fig. 1. Processes for green diesel, bio-jet fuel, and lube base oil production. (a) Common sources of triglycerides. Reaction pathways for triglyceride deoxygenation into green diesel (b) and its further hydroisomerization/cracking into bio-jet fuel (c). Reproduced with permission from Ref. [13]. Copyright 2017, American Chemical Society. (d) Reaction pathways for the ketonization/thermal oligomerization of triglycerides and subsequent hydrotreating to produce lube base oil.
Entry | Feed | Reaction | Catalyst | Reaction condition | Target product | Yield (%) | Ref. |
---|---|---|---|---|---|---|---|
1 | soybean oil | deoxygenation by hydrotreating | Pt/γ- and θ-Al2O3 with varying pore sizes | fixed bed reactor, 633 K, 20 bar H2 | n-C13-C18 (green diesel) | 44.3-74.9 | [ |
2 | palm oil | deoxygenation by hydrotreating | Pt/mesopor. γ-Al2O3 | fixed bed reactor, 653 K, 40 bar H2 | n-C15-C18 (green diesel) | 73.3-78.6 | [ |
3 | soybean oil | deoxygenation by hydrotreating | NiMoSx | batch reactor, 673 K, 92 bar H2 | n-C13-C18 (green diesel) | 60.3 | [ |
CoMoSx | 673 K, 92 bar H2 | 45.5 | |||||
Ni | 673 K, 92 bar H2 | 51.0 | |||||
Pd | 673 K, 92 bar H2 | 39.0 | |||||
4 | palm oil | hydrothermal deoxygenation | PtRe/C | batch reactor, 558 K, 10 bar H2 | n-C15-C18 (green diesel) | 10.1-72.0 | [ |
5 | palm oil | hydroisomerization/cracking of the pre-deoxygenated palm oil | Pt/Bulk-BEA | fixed bed reactor, 503 K, 20 bar H2 | n- and iso-C8-C16 (bio-jet fuel) | 49.9 | [ |
Pt/Nano-BEA | 508 K, 20 bar H2 | 55.8 | |||||
Pt/Bulk-MFI | 503 K, 20 bar H2 | 38.8 | |||||
Pt/Nano-MFI | 513 K, 20 bar H2 | 44.5 | |||||
6 | palm oil | one-pot hydrocracking | Ni/NH4-BEA | batch reactor 633 K, 30 bar H2 | C9-C21 (bio-jet fuel) | 24.9 | [ |
Ni/H-BEA | 26.1 | ||||||
Ni/NH4-MFI | 21.0 | ||||||
Ni/H-FAU | 20.3 | ||||||
7 | castor oil | one-pot hydrocracking | Pt/SAPO-11 | fixed bed reactor, 673 K, 40 bar H2 | n- and iso-C8-C16 (bio-jet fuel) | 49.9 | [ |
Pt-La/SAPO-11 | 58.2 | ||||||
Pt-Ni/SAPO-11 | 50.0 | ||||||
Pt-Zn/SAPO-11 | 47.9 | ||||||
8 | jatropha oil | one-pot hydrocracking | Pt/SAPO-11 | fixed bed reactor, 613 K, 30 bar H2 | n- and iso-C14-C18 (bio-jet fuel) | 60.7 | [ |
Pt/SAPO-11 mixed with γ-Al2O3 | 63.5 | ||||||
9 | stearic acid | ketonization | TiO2 | fixed bed reactor 653 K, 1 bar He | C35 fatty ketone (lube oil precursor) | 88.2 | [ |
oleic acid | 70.6 | ||||||
linoleic acid | 44.4 | ||||||
10 | palm oil | oligomerization at 573 K followed by deoxygenation via hydrotreating | Pt-MoOx/TiO2 | batch reactor 593 K, 50 bar H2 | branched C30-54 (lube oil) | 16.5 | [ |
soybean oil | 32.6 | ||||||
linseed oil | 56.2 |
Table 1 Summary of the catalytic conversion of triglycerides and related model compounds into products associated with diesel, jet fuel, and lube base oil.
Entry | Feed | Reaction | Catalyst | Reaction condition | Target product | Yield (%) | Ref. |
---|---|---|---|---|---|---|---|
1 | soybean oil | deoxygenation by hydrotreating | Pt/γ- and θ-Al2O3 with varying pore sizes | fixed bed reactor, 633 K, 20 bar H2 | n-C13-C18 (green diesel) | 44.3-74.9 | [ |
2 | palm oil | deoxygenation by hydrotreating | Pt/mesopor. γ-Al2O3 | fixed bed reactor, 653 K, 40 bar H2 | n-C15-C18 (green diesel) | 73.3-78.6 | [ |
3 | soybean oil | deoxygenation by hydrotreating | NiMoSx | batch reactor, 673 K, 92 bar H2 | n-C13-C18 (green diesel) | 60.3 | [ |
CoMoSx | 673 K, 92 bar H2 | 45.5 | |||||
Ni | 673 K, 92 bar H2 | 51.0 | |||||
Pd | 673 K, 92 bar H2 | 39.0 | |||||
4 | palm oil | hydrothermal deoxygenation | PtRe/C | batch reactor, 558 K, 10 bar H2 | n-C15-C18 (green diesel) | 10.1-72.0 | [ |
5 | palm oil | hydroisomerization/cracking of the pre-deoxygenated palm oil | Pt/Bulk-BEA | fixed bed reactor, 503 K, 20 bar H2 | n- and iso-C8-C16 (bio-jet fuel) | 49.9 | [ |
Pt/Nano-BEA | 508 K, 20 bar H2 | 55.8 | |||||
Pt/Bulk-MFI | 503 K, 20 bar H2 | 38.8 | |||||
Pt/Nano-MFI | 513 K, 20 bar H2 | 44.5 | |||||
6 | palm oil | one-pot hydrocracking | Ni/NH4-BEA | batch reactor 633 K, 30 bar H2 | C9-C21 (bio-jet fuel) | 24.9 | [ |
Ni/H-BEA | 26.1 | ||||||
Ni/NH4-MFI | 21.0 | ||||||
Ni/H-FAU | 20.3 | ||||||
7 | castor oil | one-pot hydrocracking | Pt/SAPO-11 | fixed bed reactor, 673 K, 40 bar H2 | n- and iso-C8-C16 (bio-jet fuel) | 49.9 | [ |
Pt-La/SAPO-11 | 58.2 | ||||||
Pt-Ni/SAPO-11 | 50.0 | ||||||
Pt-Zn/SAPO-11 | 47.9 | ||||||
8 | jatropha oil | one-pot hydrocracking | Pt/SAPO-11 | fixed bed reactor, 613 K, 30 bar H2 | n- and iso-C14-C18 (bio-jet fuel) | 60.7 | [ |
Pt/SAPO-11 mixed with γ-Al2O3 | 63.5 | ||||||
9 | stearic acid | ketonization | TiO2 | fixed bed reactor 653 K, 1 bar He | C35 fatty ketone (lube oil precursor) | 88.2 | [ |
oleic acid | 70.6 | ||||||
linoleic acid | 44.4 | ||||||
10 | palm oil | oligomerization at 573 K followed by deoxygenation via hydrotreating | Pt-MoOx/TiO2 | batch reactor 593 K, 50 bar H2 | branched C30-54 (lube oil) | 16.5 | [ |
soybean oil | 32.6 | ||||||
linseed oil | 56.2 |
Fig. 2. Deoxygenation of soybean oil using Pt/Al2O3 catalysts. Diesel-range paraffin yield plotted as a function of the pore size of the catalysts (a) and distributions of liquid products (b). Reaction conditions: 633 K, 20 bar, WHSV = 1 h-1, and H2/soybean oil = 50. (c) Third-order power law deactivation fitting of the normalized rate (defined as the ratio of the diesel-range paraffin yield at time (t) and that at t = 0) as a function of reaction time (reaction conditions: 653 K, 20 bar, WHSV = 1 h-1, and H2/soybean oil = 20). Reproduced with permission from Ref. [15]. Copyright 2022, Elsevier.
Fig. 3. Two-step hydroconversion of palm oil into bio-jet fuel. (a) Hydrocarbon distributions in the green diesel obtained from the deoxygenation of palm oil via hydrotreating over Pt/γ-Al2O3 (reaction conditions: 633 K, 2.0 MPa, and WHSV = 1.0 h-1). Product distributions obtained after subsequent hydrocracking of the green diesel under optimized conditions over Pt/Bulk-BEA (b) (reaction conditions: 503 K, 2.0 MPa, and WHSV = 2.0 h-1), Pt/Nano-BEA (c) (reaction conditions: 508 K, 2.0 MPa, and WHSV = 2.0 h-1), Pt/Bulk-MFI (d) (reaction conditions: 503 K, 2.0 MPa, and WHSV = 2.0 h-1), and Pt/Nano-MFI (e) (reaction conditions: 513 K, 2.0 MPa, and WHSV = 2.0 h-1). (f) Correlation between the maximum C8-C16 yields (filled symbols) and iso/n-paraffin ratios (open symbols) versus diffusion kinetics (D/L2) of 2,2,4-trimethylpentane in hydrocracking catalysts. Reproduced with permission from Ref. [13]. Copyright 2017, American Chemical Society.
Fig. 4. Ketonization of fatty acids. (a) Proposed reaction mechanism for ketonization. Product yields as a function of time-on-stream (stacked area graph) in the ketonization of stearic acid (including no C=C bond) (b), oleic acid (including one C=C bond) (c), and linoleic acid (including two C=C bonds) (d) (reaction conditions: 653 K, 1 bar, and WHSV: 0.5 g gcat-1 h-1). (e) Decomposition of unsaturated fatty ketone into methyl ketone and olefin via McLafferty rearrangement. Reproduced with permission from Ref. [50]. Copyright 2018, American Chemical Society.
|
[1] | 曾严, 王慧, 杨惠茹, 隽超, 李丹, 温晓东, 张帆, 邹吉军, 彭冲, 胡常伟. 镍纳米粒子耦合氧空位高效催化转化棕榈酸制备烷烃[J]. 催化学报, 2023, 47(4): 229-242. |
[2] | 汪东东, 龚万兵, 张继方, 韩苗苗, 陈春, 张云霞, 汪国忠, 张海民, 赵惠军. 限域NiCo合金纳米颗粒高效催化生物质衍生物水相加氢脱氧[J]. 催化学报, 2021, 42(11): 2027-2037. |
[3] | 林凯, 赵晨. 亲水性介孔碳负载Ru纳米粒子催化海藻油低温水相加氢脱氧制烷烃[J]. 催化学报, 2020, 41(8): 1174-1185. |
[4] | Nhung N. Duong, Darius Aruho, Bin Wang, Daniel E. Resasco. 不同Rh表面上苯甲醚加氢脱氧[J]. 催化学报, 2019, 40(11): 1721-1730. |
[5] | 郝凌婉, 苏婷, 郝冬梅, 邓昌亮, 任万忠, 吕宏缨. 己内酰胺基酸性低共熔剂对柴油的氧化脱硫:低共熔剂组成与催化反应活性[J]. 催化学报, 2018, 39(9): 1552-1559. |
[6] | 韦岳长, 吴强强, 熊靖, 刘坚, 赵震. 三维有序大孔二氧化钛表面超细钯纳米颗粒的构筑及其增强柴油炭烟催化燃烧性能[J]. 催化学报, 2018, 39(4): 606-612. |
[7] | 赵爽, 黄黎明, 江博琼, 程敏, 张嘉威, 胡一静. 分子筛负载Cu-Mn双金属柴油机尾气脱硝催化剂的稳定性[J]. 催化学报, 2018, 39(4): 800-809. |
[8] | 王露, 孙威, 刘超. 铜催化芳香醛和酮的氢硼化转化合成苄基硼酸酯类化合物[J]. 催化学报, 2018, 39(11): 1725-1729. |
[9] | Justina Gaidukevič, Jurgis Barkauskas, Anna Malaika, Paulina Rechnia-Gorący, Aleksandra Możdżyńska, Vitalija Jasulaitienė, Mieczysław Kozłowski. 改进的石墨烯基材料用作菜籽油转酯化反应制生物柴油的有效催化剂[J]. 催化学报, 2018, 39(10): 1633-1645. |
[10] | 顾蕾, 陈晓, 周瑛, 朱秋莲, 黄海凤, 卢晗锋. 载体硫酸化对柴油机尾气催化剂Pt/Ce-Zr活性和稳定性的影响[J]. 催化学报, 2017, 38(3): 607-616. |
[11] | 王晓菲, 陈吉祥. In对Ni/SiO2催化剂苯甲醚加氢脱氧性能的影响:苯环加氢及C-C键氢解的抑制作用[J]. 催化学报, 2017, 38(11): 1818-1830. |
[12] | 常涛, 何乐芹, 张晓婧, 袁明霞, 秦身钧, 赵继全. 双子型Brönsted酸性离子液体催化高级脂肪酸与醇反应合成生物柴油[J]. 催化学报, 2015, 36(7): 982-986. |
[13] | 刘福东, 单文坡, 潘大伟, 李腾英, 贺泓. NH3选择性还原NOx技术在重型柴油车尾气净化中的应用[J]. 催化学报, 2014, 35(9): 1438-1445. |
[14] | 单文坡, 刘福东, 余运波, 贺泓. 氧化铈在氨选择性催化还原氮氧化物中的应用[J]. 催化学报, 2014, 35(8): 1251-1259. |
[15] | 刘琪英, 左华亮, 张琦, 王铁军, 马隆龙. Ni/SAPO-11催化剂上棕榈油加氢脱氧制异构烃燃料[J]. 催化学报, 2014, 35(5): 748-756. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||