催化学报 ›› 2024, Vol. 61: 144-153.DOI: 10.1016/S1872-2067(24)60056-2

• 论文 • 上一篇    下一篇

六氟钽酸氨拓扑转变制备低深能级缺陷Ta3N5光阳极实现超低偏压光电化学分解水

徐伟a,b, 甄超a,b,*(), 朱华泽a,b, 姚婷婷a,b, 邱建航a,b, 梁艳a, 白朔b,c, 陈春林a,b, 成会明a,d, 刘岗a,b,*()   

  1. a中国科学院金属研究所, 沈阳材料科学国家实验室, 辽宁沈阳 110016
    b中国科学技术大学材料科学与工程学院, 辽宁沈阳 110016
    c中国科学院金属研究所, 师昌绪先进材料创新中心, 辽宁沈阳 110016
    d中国科学院深圳先进技术研究院, 碳中和技术研究所, 广东深圳 518055
  • 收稿日期:2024-04-20 接受日期:2024-05-20 出版日期:2024-06-18 发布日期:2024-06-20
  • 通讯作者: * 电子信箱: czhen@imr.ac.cn (甄超), gangliu@imr.ac.cn (刘岗).
  • 基金资助:
    国家自然科学基金项目(52425201);国家自然科学基金项目(52072377);国家自然科学基金项目(52188101);国家重点发展计划项目(2021YFA1500800);中国科学院青年创新促进会项目(2020192);中国科学院青年基础研究项目(YSBR-004);新基石科学基金(科学探索奖)

A Ta3N5 photoanode with few deep-level defects derived from topologic transition of ammonium tantalum oxyfluoride for ultralow-bias photoelectrochemical water splitting

Wei Xua,b, Chao Zhena,b,*(), Huaze Zhua,b, Tingting Yaoa,b, Jianhang Qiua,b, Yan Lianga, Shuo Baib,c, Chunlin Chena,b, Hui-Ming Chenga,d, Gang Liua,b,*()   

  1. aShenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
    bSchool of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, China
    cShi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, China
    dInstitute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
  • Received:2024-04-20 Accepted:2024-05-20 Online:2024-06-18 Published:2024-06-20
  • Contact: * E-mail: czhen@imr.ac.cn (C. Zhen); gangliu@imr.ac.cn (G. Liu).
  • Supported by:
    National Natural Science Foundation of China(52425201);National Natural Science Foundation of China(52072377);National Natural Science Foundation of China(52188101);National Key R&D Program of China(2021YFA1500800);Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020192);CAS Projects for Young Scientists in Basic Research(YSBR-004);New Cornerstone Science Foundation through the XPLORER PRIZE

摘要:

Ta3N5是一种具有2.1 eV直接带隙的n型半导体, 其带隙跨越水的氧化还原电位. 此外, Ta3N5的理论太阳能制氢效率(STH)高达15.9%, 超过商业化应用的效率门槛(10%), 是一种理想的光电化学分解水制氢光阳极材料. 采用Ta2O5作为前驱体, 在氨气气氛下高温氮化制备Ta3N5是一个由表及里的非均相氮化过程, 该过程会产生大量的低价钽和氮空位等本征深能级缺陷, 导致费米能级钉扎效应的产生, 从而使得光生电压显著降低和光电流起始电位较高. 因此, 开发能够进行体相均相氮化的前驱体, 以抑制Ta3N5深能级缺陷的产生, 具有重要意义.
本文采用气相溶剂热法, 在钽箔上制备了一种六氟钽酸氨((NH4)2Ta2O3F6)化合物, 并以其多面体锥阵列薄膜作为前驱体, 通过可控的氮化过程将前驱体结构拓扑转变为低深能级缺陷含量的Ta3N5多孔阵列薄膜. 在高温氮化过程中, (NH4)2Ta2O3F6会释放含氮、氢和氟的气体小分子并形成贯穿体相的多孔通道, 有利于氨气及氮化过程中产生的其他小分子物质的渗透, 促进体相均匀氮化过程, 避免生成大量的本征深能级缺陷. 同时, (NH4)2Ta2O3F6中的高电负性氟离子可以减弱Ta-O键, 进一步促进氮化反应. 扫描电镜和透射电镜(TEM)结果表明, 制备的(NH4)2Ta2O3F6是具有实心结构的多面体锥阵列薄膜, 而拓扑转变所得的Ta3N5多面体锥薄膜具有多孔结构. X射线光电子能谱(XPS)、紫外-可见漫反射光谱和稳态/瞬态光电压谱表征结果表明, 通过(NH4)2Ta2O3F6拓扑转变制备Ta3N5可有效抑制Ta3N5薄膜中深能级缺陷的形成. 采用两种产氧反应助催化剂依次修饰后, XPS和TEM结果显示出助催化剂的双壳层结构与化学组成. 光电化学分解水测试结果表明, 所制得的Ta3N5光阳极在AM1.5G模拟太阳光的照射下, 可展现出0.2 VRHE (vs.RHE)的极低光电流起始电位, 且在1.23 VRHE时的光电流密度可达3.28 mA cm-2, 经过连续5 h的稳定性测试, 仍能保持初始值的85%. 此外, 稳定性测试前后助催化剂的XPS和TEM结果表明, Ta3N5光阳极光电流下降的原因可能是产氧助催化剂中硼物种的消耗. 而通过减小(NH4)2Ta2O3F6多面体锥前驱体的尺寸, 可以进一步减少Ta3N5薄膜中的本征深能级缺陷的含量, 修饰助催化剂后可在0 VRHE下展现出光电催化水氧化活性.
综上所述, 通过(NH4)2Ta2O3F6新型前驱体拓扑转变制备了低深能级缺陷含量的Ta3N5光阳极, 表现出极低的光电流起始电位, 为构建无偏压下自发全分解水的低深能级缺陷浓度的Ta3N5光电极提供了一种新途径, 该方法也可拓展至其他过渡金属氮化物的可控制备与缺陷调控.

关键词: (NH4)2Ta2O3F6, 拓扑转变, 低缺陷Ta3N5, 起始电位, 光电化学分解水

Abstract:

An open challenge for developing solar-driven Ta3N5-based photoanodes with the ability to induce low-bias photoelectrochemical (PEC) water splitting is that their deep-level defects originated from low-valent tantalum cations (Ta3+) and nitrogen vacancies (VN) seriously reduce the photovoltage and thus increase the bias for water splitting. Herein, we developed an effective topotactic transition synthesis route of producing few deep-level defects porous Ta3N5 film from the precursor film of ammonium tantalum oxyfluoride compound ((NH4)2Ta2O3F6) pyramids on the Ta foil. The highly electronegative fluoride ions in (NH4)2Ta2O3F6 could weaken the Ta-O bonds and the accompanied porous structure facilitates reactant diffusion, which favors the complete nitridation. Consequently, the resulting porous Ta3N5 film has very few deep-level defects, enabling an ultralow photocurrent onset potential at 0.2 V (vs. RHE) and a short-circuit photocurrent density (Jsc) of 3.28 mA cm-2 after decorating oxygen evolution reaction (OER) cocatalysts under AM 1.5 G irradiation. Moreover, the Jsc can retain 85% of the initial value for a 5 h continuous stability test. By reducing the particle size of (NH4)2Ta2O3F6 pyramid precursor, the deep-level defects could be further lowered in the Ta3N5 film, achieving the photoactivity for water oxidation at 0 V (vs. RHE) after modifying the OER co-catalyst.

Key words: (NH4)2Ta2O3F6, Topologic transition, Less defective Ta3N5, Onset potential, Photoelectrochemical water splitting