催化学报 ›› 2021, Vol. 42 ›› Issue (11): 1999-2009.DOI: 10.1016/S1872-2067(21)63829-9

• 论文 • 上一篇    下一篇

Ni(OH)2量子点助催化剂修饰α-Fe2O3光阳极增强光电分解水性能

荣佳悦, 王珍珍, 吕嘉奇, 范明, 种瑞峰*(), 常志显#()   

  1. 河南大学化学化工学院, 河南省环境污染控制材料国际联合实验室, 河南省镁合金腐蚀防护工程技术研究中心, 河南开封475004
  • 收稿日期:2021-02-07 修回日期:2021-02-07 接受日期:2021-04-08 出版日期:2021-11-18 发布日期:2021-04-30
  • 通讯作者: 种瑞峰,常志显
  • 基金资助:
    国家自然科学基金(U2004195);国家自然科学基金(51502078);河南省高校青年骨干教师基金(2020GGJS036);河南省教育厅科技攻关(212102310505);河南省教育厅科技攻关(192102310490);河南省教育厅科技攻关(182102410090)

Ni(OH)2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting

Jiayue Rong, Zhenzhen Wang, Jiaqi Lv, Ming Fan, Ruifeng Chong*(), Zhixian Chang#()   

  1. Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China
  • Received:2021-02-07 Revised:2021-02-07 Accepted:2021-04-08 Online:2021-11-18 Published:2021-04-30
  • Contact: Ruifeng Chong,Zhixian Chang
  • About author:#E-mail: chzx19@henu.edu.cn
    *E-mail: rfchong@henu.edu.cn;
  • Supported by:
    National Natural Science Foundation of China(U2004195);National Natural Science Foundation of China(51502078);Foundation for University Youth Key Teachers from Henan Province(2020GGJS036);Science and Technology Research Project of Henan Province(212102310505);Science and Technology Research Project of Henan Province(192102310490);Science and Technology Research Project of Henan Province(182102410090)

摘要:

氢气具有无毒、能量密度高以及燃烧过程零污染等优点, 被誉为是未来代替化石能源的优质新型能源载体. 探索高效的、可持续的制氢技术对氢气能源发展至关重要. 其中, 光电化学水分解电池以太阳能作为驱动力将水分解成氢气和氧气, 是解决能源和环境危机的理想途径之一. α-Fe2O3是一种窄带隙(~2.1 eV)半导体, 可以吸收约40%的太阳光, 同时具有天然丰度高、成本低等优点, 是目前备受关注的光阳极材料. 然而, 由于α-Fe2O3空穴扩散距离短和表面产氧动力学慢等缺点, 导致α-Fe2O3的光电分解水效率仍然较低. 针对上述问题,目前主要通过掺杂、构建异质结和负载助催化剂等手段来改善其性能. 其中, 负载助催化剂可以有效降低水氧化活化能和促进表面电荷分离, 是改善光阳极性能的有效手段.
本文采用离子吸附和螯合剂调控水解两步法, 将Ni(OH)2量子点(Ni(OH)2 QDs)原位生长于α-Fe2O3表面, 成功构建了Ni(OH)2 QDs/α-Fe2O3复合光阳极. 透射电子显微镜结果表明, Ni(OH)2以直径为3-5 nm的量子点附着于α-Fe2O3纳米棒表面, 并形成独特且牢固的异质结结构. 光电水氧化性能表明, 所制备的Ni(OH)2 QDs/α-Fe2O3光电阳极表现出良好的光电性能, 其光电流达到了1.93 mA·cm-2 (1.23 V vs. RHE), 是单纯α-Fe2O3的3.5倍, 且Ni(OH)2 QDs助催化剂使α-Fe2O3的起始电位降低了~100 mV. 2 h稳定性测试结果表明, Ni(OH)2 QDs助催化剂在提升α-Fe2O3光电水氧化性能的同时, 自身能够保持良好的稳定性, 这在Ni(OH)2作为光电水氧化助催化剂的研究中较为少见. 通过电化学活性面积、开路电压、电化学阻抗谱、注入效率和强度调制光电流谱等表征了Ni(OH)2 QDs对α-Fe2O3光阳极和电解液界面电荷传输的影响. 结果表明, Ni(OH)2 QDs不仅能充分暴露水氧化活性位点, 促进载流子在界面快速迁移, 而且能有效钝化α-Fe2O3表面态, 从而降低光生电子-空穴表面复合几率. 本文可为多功能和高效量子点助催化剂/半导体光阳极的构建及在光电分解水制氢方面的应用提供一定借鉴.

关键词: 光电化学分解水, 三氧化二铁, 助催化剂, 氢氧化镍, 量子点

Abstract:

Depositing a cocatalyst has proven to be an important strategy for improving the photoelectrochemical (PEC) water-splitting efficiency of photoanodes. In this study, Ni(OH)2 quantum dots (Ni(OH)2 QDs) were deposited in situ onto an α-Fe2O3 photoanode via a chelation-mediated hydrolysis method. The photocurrent density of the Ni(OH)2 QDs/α-Fe2O3 photoanode reached 1.93 mA·cm-2 at 1.23 V vs. RHE, which is 3.5 times that of α-Fe2O3, and an onset potential with a negative shift of ca. 100 mV was achieved. More importantly, the Ni(OH)2 QDs exhibited excellent stability in maintaining PEC water oxidation at a high current density, which is attributed to the ultra-small crystalline size, allowing for the rapid acceptance of holes from α-Fe2O3 to Ni(OH)2 QDs, formation of active sites for water oxidation, and hole transfer from the active sites to water molecules. Further (photo)electrochemical analysis suggests that Ni(OH)2 QDs not only provide maximal active sites for water oxidation but also suppress charge recombination by passivating the surface states of α-Fe2O3, thereby significantly enhancing the water oxidation kinetics over the α-Fe2O3 surface.

Key words: Photoelectrochemical water splitting, α-Fe2O3, Cocatalyst, Ni(OH)2, Quantum dots