催化学报 ›› 2022, Vol. 43 ›› Issue (7): 1774-1804.DOI: 10.1016/S1872-2067(22)64105-6

• 综述 • 上一篇    下一篇

光催化水分解中地球储量丰富助催化剂的光沉积方法、功能与机理

赵辉a,b, 茅沁怡a,b, 蹇亮a,b, 董玉明a,b,*(), 朱永法c,#()   

  1. a江南大学化学与材料工程学院, 合成与生物胶体教育部重点实验室, 江苏无锡214122
    b江南大学光响应功能分子材料国际联合研究中心, 江苏无锡214122
    c清华大学化学系, 北京100084
  • 收稿日期:2021-11-06 接受日期:2021-12-15 出版日期:2022-07-18 发布日期:2022-05-20
  • 通讯作者: 董玉明,朱永法
  • 基金资助:
    国家自然科学基金(22136002);国家自然科学基金(22172064);国家自然科学基金(21806059);国家自然科学基金(21676123)

Photodeposition of earth-abundant cocatalysts in photocatalytic water splitting: Methods, functions, and mechanisms

Hui Zhaoa,b, Qinyi Maoa,b, Liang Jiana,b, Yuming Donga,b,*(), Yongfa Zhuc,#()   

  1. aKey Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
    bInternational Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi 214122, Jiangsu, China
    cDepartment of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2021-11-06 Accepted:2021-12-15 Online:2022-07-18 Published:2022-05-20
  • Contact: Yuming Dong, Yongfa Zhu
  • Supported by:
    National Natural Science Foundations of China(22136002);National Natural Science Foundations of China(22172064);National Natural Science Foundations of China(21806059);National Natural Science Foundations of China(21676123)

摘要:

氢能是实现碳中和目标的关键能源之一. 光催化分解水制氢是一项绿色制氢技术, 自从20世纪80年代日本科学家Honda和Fujishima首次发现了TiO2电极上的光电解水产氢以来, 该技术已成为了全世界关注的研究方向. 负载助催化剂能够提高电荷分离、降低过电势/活化能和加快表面反应, 作为一种有效的改性策略被广泛地用于提高光催化分解水制氢效率. 助催化剂的性能在很大程度上依赖其沉积方式, 光沉积有助于加快光生电子-空穴对从光催化剂向助催化剂的转移, 大幅改善了电荷的分离和传输效率, 显著提升了催化剂的光催化性能. 同时, 该策略操作简单、条件温和以及无需额外添加氧化还原试剂来实现助催化剂的生成. 从目前报道的助催化剂光沉积研究中可以发现, 贵金属基助催化剂的光沉积在光催化分解水反应中已被广泛研究, 然而贵金属价格昂贵、储量稀少, 极大限制了其在大规模能源生产中的应用. 为此, 光沉积地球储量丰富的非贵金属助催化剂受到了研究者高度重视, 近年来也取得了一些重要的进展, 但尚未有综述进行报道.

本文综述了近年来光沉积非贵金属光催化分解水助催化剂的研究进展. 总结了非贵金属水分解助催化剂光沉积的基础, 包括光沉积的原理、光沉积的优势、助催化剂的种类、助催化剂的作用、影响光沉积的因素、光沉积改性策略以及设计助催化剂光沉积的考虑因素. 从制备方法、催化性能和作用机制等方面, 详细讨论了不同非贵金属助催化剂光沉积在光催化分解水中的应用, 包括制氢半反应(过渡金属、过渡金属硫化物、过渡金属磷化物、过渡金属氧化物和过渡金属氢氧化物)、制氧半反应(钴基氧化物、磷酸盐和羟基氧化物以及其他过渡金属氧化物)和全分解水反应(沉积产氢助催化剂、沉积产氧助催化剂和产氢-产氧双助催化剂共沉积). 提出了非贵金属助催化剂光沉积在光催化水分解应用中面临的挑战和可能的未来研究方向. 本综述不仅展现出光沉积策略在高效、稳定、低成本的非贵金属基水分解助催化剂开发中的巨大潜力, 而且对深入理解非贵金属助催化剂诱导加快光催化分解水反应的机制具有重要意义.

关键词: 光沉积, 非贵金属助催化剂, 光催化, 水分解

Abstract:

Photocatalytic water splitting based on semiconductor photocatalysts is a promising approach for producing carbon-neutral, sustainable, and clean H2 fuel. Cocatalyst loading, which is an appealing strategy, has been extensively employed to improve the photocatalytic efficiency semiconductors. In view of the high cost and rare preservation of noble metal cocatalysts that significantly hinder their utilization for large-scale energy production, various cocatalysts comprising earth-abundant elements have been developed as noble-metal-free candidates using different methods to boost photocatalytic water splitting. Among these preparation strategies, photodeposition has attracted tremendous attention in the deposition of earth-abundant cocatalysts owing to its simplicity and moderate availability, improved interfacial charge separation and transfer, and abundant active sites on the surface. In this review, we first summarize the deposition principles, deposition advantages, categories of cocatalysts, roles of cocatalysts, influencing factors, modification strategies, and design considerations in the photodeposition of earth-abundant cocatalysts. The photodeposited earth-abundant cocatalysts for the photocatalytic H2 evolution half reaction, photocatalytic O2 evolution half reaction, and overall photocatalytic water splitting are discussed. Finally, some perspectives on the challenges and possible future directions for the photodeposition of earth-abundant cocatalysts in photocatalytic water splitting are presented.

Key words: Photodeposition, Noble-metal-free cocatalyst, Photocatalysis, Water splitting