催化学报 ›› 2022, Vol. 43 ›› Issue (2): 461-471.DOI: 10.1016/S1872-2067(21)63915-3

• 论文 • 上一篇    下一篇

Ti3C2 MXene助催化剂组装的介孔TiO2用以增强光催化甲基橙降解和产氢活性

李华鹏, 孙彬*(), 高婷婷, 李欢, 任永强, 周国伟#()   

  1. 齐鲁工业大学(山东省科学院)化学与化工学院, 济南市多尺度功能材料工程实验室, 山东省高校轻工精细化学品重点实验室, 山东济南 250353
  • 收稿日期:2021-05-01 接受日期:2021-05-01 出版日期:2022-02-18 发布日期:2022-02-18
  • 通讯作者: 孙彬,周国伟
  • 基金资助:
    国家自然科学基金(51972180);国家自然科学基金(51572134);山东省自然科学基金(ZR2019BB030);山东省重点研发计划(2019GGX102070);济南市高校院所创新团队(2018GXRC006)

Ti3C2 MXene co-catalyst assembled with mesoporous TiO2 for boosting photocatalytic activity of methyl orange degradation and hydrogen production

Huapeng Li, Bin Sun*(), Tingting Gao, Huan Li, Yongqiang Ren, Guowei Zhou#()   

  1. Key Laboratory of Fine Chemicals in Universities of Shandong, Jinan Engineering Laboratory for Multi-scale Functional Materials, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, Shandong, China
  • Received:2021-05-01 Accepted:2021-05-01 Online:2022-02-18 Published:2022-02-18
  • Contact: Bin Sun, Guowei Zhou
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(51972180);This work was supported by the National Natural Science Foundation of China(51572134);Natural Science Foundation of Shandong Province(ZR2019BB030);Key Research & Development Project of Shandong Province(2019GGX102070);the Program for Scientific Research Innovation Team in Colleges and Universities of Jinan(2018GXRC006)

摘要:

利用太阳能驱动半导体光催化剂进行光催化降解污染物和产氢被认为是解决环境问题和能源危机最有效的方法之一. 在众多的半导体光催化剂中, TiO2因其优异的化学稳定性、环境友好和成本低等优点, 在光催化领域具有不可或缺的作用. 介孔TiO2由于具有独特的介孔结构, 更有利于光催化过程中反应物的吸附和传输. 然而, 单一TiO2具有较高的光生载流子重组效率和低的光利用率等缺点, 导致其光催化活性低. 通过负载助催化剂可以增强光吸收、促进光生载流子的分离以及提供更多活性位点, 是提高光催化活性的一种有效策略. 目前, 常用的高效助催化剂主要为贵金属, 如Pt, Pd和Au等, 但昂贵的价格及稀缺性限制了其在未来的广泛应用. 因此, 寻找新型的非贵金属助催化剂来提高光催化剂的活性具有重要意义. MXene作为一种新型的二维过渡金属碳化物和/或氮化物, 具有丰富的表面亲水性官能团、良好的金属导电性和较高的载流子迁移率等特性, 适合用于光催化中作为助催化剂来提高光催化性能. 受此启发, 本文利用静电自组装策略将介孔TiO2纳米颗粒均匀地固定在Ti3C2 MXene助催化剂上, 构建了紧密的介孔TiO2/Ti3C2复合材料, 并研究其光催化降解甲基橙(MO)和产氢性能.
Zeta电位测试结果表明, 带有相反表面电荷的介孔TiO2和Ti3C2可以通过静电作用构筑稳定的复合材料. X-射线粉末衍射、拉曼光谱、X-射线光电子能谱(XPS)、透射电子显微镜和高分辨透射电子显微镜等表征也进一步表明, 成功制备了介孔TiO2/Ti3C2复合材料. XPS也证明在复合材料中光生电子从TiO2转移到Ti3C2助催化剂上, 表明两者之间具有强相互作用. BET测试结果表明, 相比单一的介孔TiO2, 复合材料具有更大的比表面积和孔体积, 可提供更多的活性位点, 有利于提高光催化活性. 紫外-可见漫反射光谱表明, Ti3C2助催化剂的引入提高了材料的光吸收能力. 荧光光谱、时间分辨荧光光谱、光电流密度和电化学阻抗等测试结果表明, 复合材料具有优异的光生载流子分离和转移能力.
在光催化性能测试中, 最佳Ti3C2含量(3 wt%)的介孔TiO2/Ti3C2复合材料在40 min内对MO的光催化降解效率可达99.6%, 并利用自由基捕获实验和电子自旋共振表征证实了活性物种·O2 -和·OH在光催化降解过程中起主要作用. 此外, 该复合材料也表现出了较好的产氢性能(218.85 μmol g -1 h -1), 约为单一介孔TiO2的5.6倍, 且三次循环后仍保持稳定的产氢效率. 综上, MXene族材料可以作为一种高效的非贵金属助催化剂应用于光催化领域.

关键词: 介孔TiO2, 静电自组装, Ti3C2 MXene, 助催化剂, 光催化降解, 光催化产氢

Abstract:

Photocatalytic degradation and hydrogen production using solar energy through semiconductor photocatalysts are deemed to be a powerful approach for solving environmental and energy crisis. However, the biggest challenge in photocatalysis is the efficient separation of photo-induced carriers. To this end, we report that the mesoporous TiO2 nanoparticles are anchored on highly conductive Ti3C2 MXene co-catalyst by electrostatic self-assembly strategy. The constructed mesoporous TiO2/Ti3C2 composites display that the mesoporous TiO2 nanoparticles are uniformly distributed on the surface of layer structured Ti3C2 nanosheets. More importantly, the as-obtained mesoporous TiO2/Ti3C2 composites reveal the significantly enhanced light absorption performance, photo-induced carriers separation and transfer ability, thus boosting the photocatalytic activity. The photocatalytic methyl orange degradation efficiency of mesoporous TiO2/Ti3C2 composite with an optimized Ti3C2 content (3 wt%) can reach 99.6% within 40 min. The capture experiments of active species confirm that the ·O2 - and ·OH play major role in photocatalytic degradation process. Furthermore, the optimized mesoporous TiO2/Ti3C2 composite also shows an excellent photocatalytic H2 production rate of 218.85 μmol g -1 h -1, resulting in a 5.6 times activity as compared with the pristine mesoporous TiO2 nanoparticles. This study demonstrates that the MXene family materials can be applied as highly efficient noble-metal-free co-catalysts in the field of photocatalysis.

Key words: Mesoporous TiO2, Electrostatic self-assembly, Ti3C2 MXene, Co-catalyst, Photocatalytic degradation, Photocatalytic hydrogen production