催化学报 ›› 2024, Vol. 64: 66-76.DOI: 10.1016/S1872-2067(24)60087-2

• 论文 • 上一篇    下一篇

聚乙烯亚胺辅助合成包含多尺寸Ni物种的中空碳球用于CO2电还原

Kaining Lia, Yasutaka Kuwaharaa,b,*(), Hiromi Yamashitaa,b,*()   

  1. a大阪大学大学院工学研究科材料与制造科学部, 大阪, 日本
    b大阪大学开放和跨学科研究所创新催化科学部, 大阪, 日本
  • 收稿日期:2024-05-21 接受日期:2024-06-23 出版日期:2024-09-18 发布日期:2024-09-19
  • 通讯作者: * 电子信箱: kuwahara@mat.eng.osaka-u.ac.jp (Y. Kuwahara),yamashita@mat.eng.osaka-u.ac.jp (H. Yamashita).

Poly(ethylenimine)-assisted synthesis of hollow carbon spheres comprising multi-sized Ni species for CO2 electroreduction

Kaining Lia, Yasutaka Kuwaharaa,b,*(), Hiromi Yamashitaa,b,*()   

  1. aDivision of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Osaka 565-0871, Japan
    bInnovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
  • Received:2024-05-21 Accepted:2024-06-23 Online:2024-09-18 Published:2024-09-19
  • Contact: * E-mail: kuwahara@mat.eng.osaka-u.ac.jp (Y. Kuwahara),yamashita@mat.eng.osaka-u.ac.jp (H. Yamashita).

摘要:

电化学CO2还原生产高附加值化学品和燃料是能源转换领域的研究热点之一. 开发具有高导电性和高暴露活性位点的高效催化剂用于CO2电还原仍然具有挑战性. 本文开发了一种可靠的聚乙烯亚胺(PEI)辅助策略用于制备中空碳纳米复合材料, 该纳米复合材料包含单位点Ni修饰的碳壳和受限的Ni纳米颗粒(简写为Ni@NHCS), 其中PEI不仅可以作为媒介诱导Ni纳米颗粒在空心碳球内高度分散地生长, 而且还能提供氮源构建高分散的Ni-Nx活性位点. Ni@NHCS的独特结构, 既可以有效防止Ni纳米颗粒的团聚和暴露, 同时又可以确保大量Ni-Nx活性位点的可及性. 因此, Ni@NHCS在‒1.0 V vs. RHE的工作电位下, 可实现高CO分电流密度(26.9 mA cm‒2)和高CO法拉第效率(93.0%), 显著优于无PEI的对照样品. 除了具有较好的活性和选择性, 得益于中空碳球的壳层限域效应, 该材料还具有出色的稳定性. 本研究有望帮助理解电催化CO2还原中镍基碳催化剂体系的构效关系. 此外, 本工作报道的PEI辅助合成概念还适用于开发其他高性能、多用途的金属基纳米限域材料.

关键词: 空心碳球, Ni纳米颗粒, CO2还原, 电催化, 单原子催化剂

Abstract:

Electrochemical CO2 reduction to produce value-added chemicals and fuels is one of the research hotspots in the field of energy conversion. The development of efficient catalysts with high conductivity and readily accessible active sites for CO2 electroreduction remains challenging yet indispensable. In this work, a reliable poly(ethyleneimine) (PEI)-assisted strategy is developed to prepare a hollow carbon nanocomposite comprising a single-site Ni-modified carbon shell and confined Ni nanoparticles (NPs) (denoted as Ni@NHCS), where PEI not only functions as a mediator to induce the highly dispersed growth of Ni NPs within hollow carbon spheres, but also as a nitrogen precursor to construct highly active atomically-dispersed Ni-Nx sites. Benefiting from the unique structural properties of Ni@NHCS, the aggregation and exposure of Ni NPs can be effectively prevented, while the accessibility of abundant catalytically active Ni-Nx sites can be ensured. As a result, Ni@NHCS exhibits a high CO partial current density of 26.9 mA cm-2 and a Faradaic efficiency of 93.0% at -1.0 V vs. RHE, outperforming those of its PEI-free analog. Apart from the excellent activity and selectivity, the shell confinement effect of the hollow carbon sphere endows this catalyst with long-term stability. The findings here are anticipated to help understand the structure-activity relationship in Ni-based carbon catalyst systems for electrocatalytic CO2 reduction. Furthermore, the PEI-assisted synthetic concept is potentially applicable to the preparation of high-performance metal-based nanoconfined materials tailored for diverse energy conversion applications and beyond.

Key words: Hollow carbon sphere, Ni nanoparticle, CO2 reduction, Electrocatalysis, Single-atom catalyst