催化学报 ›› 2024, Vol. 62: 32-52.DOI: 10.1016/S1872-2067(24)60068-9

• 综述 • 上一篇    下一篇

原位衰减全反射表面增强红外光谱示踪单原子催化二氧化碳电还原反应中间体的研究进展

严靖a, 倪嘉琪a, 孙宏丽a,*(), 苏陈良a,*(), 刘彬b,c,*()   

  1. a深圳大学光电子工程学院, 微纳光电子学研究院, 教育部二维材料光电科技国际合作联合实验室, 广东深圳 518060
    b香港城市大学材料科学与工程学系, 香港 999077
    c香港城市大学化学系, 香港清洁能源研究所及超级金刚石与先进薄膜研究中心, 香港 999077
  • 收稿日期:2024-03-21 接受日期:2024-05-27 出版日期:2024-07-18 发布日期:2024-07-10
  • 通讯作者: 电子信箱: hlsun@szu.edu.cn (孙宏丽), chmsuc@szu.edu.cn (苏陈良), bliu48@cityu.edu.hk (刘彬).
  • 基金资助:
    国家自然科学基金(21972094);国家自然科学基金(22102102);国家自然科学基金(22372102);广东省教育委员会(839-0000013131);深圳市科技计划(RCJC20200714114434086);香港城市大学创业基金和广东省基础与应用基础研究基金(2020A1515010982);中国博士后科学基金(2023M742395);深圳市科技计划(20231122120657001);深圳孔雀计划深圳大学创业基金(20210308299C);深圳大学科研团队培养计划(2023QNT013)

Progress in tracking electrochemical CO2 reduction intermediates over single-atom catalysts using operando ATR-SEIRAS

Jing Yana, Jiaqi Nia, Hongli Suna,*(), Chenliang Sua,*(), Bin Liub,c,*()   

  1. aInternational Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, Guangdong, China
    bDepartment of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
    cDepartment of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
  • Received:2024-03-21 Accepted:2024-05-27 Online:2024-07-18 Published:2024-07-10
  • Contact: E-mail: hlsun@szu.edu.cn (H. Sun), chmsuc@szu.edu.cn (C. Su), bliu48@cityu.edu.hk (B. Liu).
  • About author:Hongli Sun (Institute of Microscale Optoelectronics, Shenzhen University) received her bachelor’s and master’s degrees at Wuhan University of Technology, China in 2013 and 2016, respectively, and completed his doctoral degree at the Chinese University of Hongkong in 2019. After spending two years as postdoctoral fellow in Shenzhen University, China, she joined Institute of Microscale Optoelectronics at Shenzhen University as an Assistant Professor in March 2023. Her research focuses on photo(electro)catalysis for energy conversion and environmental remediation and in-situ/operando characterizations.
    Chenliang Su (Institute of Microscale Optoelectronics, Shenzhen University) received his BS degree (2005) and PhD degree (2010) in the Department of Chemistry from Zhejiang University of China (2010). After that he worked as a research fellow at the Advanced 2D Materials and Graphene Research Centre in the National University of Singapore (2010-2015). He is now a full-professor at the International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology (ICL-2D MOST), Shenzhen University and a Principal Investigator of ICL-2D MOST in materials science. His current interests focus on the chemical design of nano materials for catalysis and energy related applications.
    Bin Liu (Department of Materials Science and Engineering, City University of Hong Kong) received his bachelor of engineering (1st Class Honours) and master of engineering degrees at the National University of Singapore, Singapore in 2002 and 2004, respectively, and completed his doctoral degree at the University of Minnesota, USA in 2011. After spending a year as postdoctoral fellow in the University of California Berkeley, USA, he joined School of Chemical and Biomedical Engineering at Nanyang Technological University as an Assistant Professor in June 2012 and was promoted to Associate Professor in March 2017. In February 2023, Professor Liu joined the Department of Materials Science and Engineering at City University of Hong Kong as a Professor. His research focuses on photo(electro)catalysis and in-situ/operando characterization.
  • Supported by:
    National Natural Science Foundation of China(21972094);National Natural Science Foundation of China(22102102);National Natural Science Foundation of China(22372102);Educational Commission of Guangdong Province(839-0000013131);Shenzhen Science and Technology Program(RCJC20200714114434086);City University of Hong Kong start up fund, and the Guangdong Basic and Applied Basic Research Foundation(2020A1515010982);China Postdoctoral Science Foundation(2023M742395);Shenzhen Science and Technology Program(20231122120657001);Shenzhen University Start Up Fund, Shenzhen Peacock Plan(20210308299C);Research Team Cultivation Program of Shenzhen University(2023QNT013)

摘要:

电催化二氧化碳还原反应(CO2RR)涉及多个电子和质子转移, 动态演变过程复杂. 具有结构简单性和均匀性的单原子催化剂(SACs)是研究上述复杂过程的理想模型催化剂, 有利于理解催化构效关系. 原位衰减全反射表面增强红外光谱技术为识别单原子催化CO2RR的动态演变过程提供了有利方法.

本文总结了原位红外光谱在电催化CO2RR研究中的应用: 首先, 简要介绍了电化学衰减全反射表面增强红外光谱的表面增强机制; 详细探讨了原位衰减全反射表面增强红外光谱技术在研究原子级金属催化剂催化CO2/CORR反应动态演变过程的关键作用; 简述了原位红外谱图确定界面水的相关信息以及电极局部pH值的定量方法. 原位电化学红外光谱技术加深了对CO2RR反应机制的理解, 揭示了催化剂结构、电解质种类、分子吸附方式等对反应活性和选择性的调控规律. 尽管研究已取得较大进展, 但由于电催化CO2RR的复杂性, 学者对该反应的认知仍不够全面和深入, 面临的机遇和挑战如下: (1) 精准辨识CO2RR关键中间体/生成物. 特别是当中间体/生成物的特征峰与其他峰重叠时, 精准识别相关特征峰将极具挑战. 一方面, 需进一步提高原位光谱技术分辨率; 另一方面, 近年来深度学习算法在光谱分析领域的应用为中间体/生成物混合特征峰的精准识别提供了有效方案, 此类算法能建立变量之间的关系, 实现光谱中特征信息的智能、精准提取; (2) 深入解析CO2RR机理和复杂的反应路径. 目前, 研究者尚难以通过直接实验手段明确CO2RR路径. 原位电化学红外光谱技术结合密度泛函理论(DFT)是明确CO2RR中间体和反应途径的可行方案, 能够进一步指导反应条件优化和催化剂结构设计; (3)建立工况下的原位CO2RR机理研究方案. 膜电极组件(MEA)电解槽通过使用膜直接连接阴极气体扩散电极和阳极, 有效解决了H型反应器的局限性, 具有工业应用前景. 然而, 基于MEA的工况条件CO2RR机制研究鲜有报道. 因此, 需要开发工况条件下的原位电化学光谱技术, 以探究三相界面分子尺度关键中间体/生成物动态演变, 并建立工况条件的CO2RR催化构效关系, 这将有助于提高工况下的选择性、转化效率, 以及实现更高价值的多碳产品的规模生产, 并进一步指导高效反应器设计.

综上, 本文详细综述了原位红外光谱在电化学CO2RR研究中的应用, 并对电催化CO2RR目前遇到的问题提出了解决方案, 希望对广大科研工作者利用原位红外光谱进一步深入研究电催化CO2RR提供参考和借鉴.

关键词: 二氧化碳电还原, 单原子催化剂, 电化学原位衰减全反射表面增强红外光谱, 反应动态演变过程, 界面水

Abstract:

Owing to the multiple proton-coupled electron transfer steps involved in the electrochemical carbon dioxide reduction reaction (CO2RR), single-atom catalysts (SACs) are ideal platforms for studying such complex chemical reaction processes. The structural simplicity and homogeneity of SACs facilitate the understanding of the structure-performance relationship and reaction mechanisms of the CO2RR. Operando attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) is a valuable tool to identify the dynamic intermediate transformation processes in the CO2RR occurring on SACs and to study the impact of local reaction environments on the CO2RR performance. This article reviews operando ATR-SEIRAS and its key applications in the SAC-catalyzed CO2RR. The review briefly introduces the surface enhancement mechanism of electrochemical in situ infrared spectroscopy, formation mechanisms of the C1 and C2 products, function of operando ATR-SEIRAS in investigating the mechanisms of single-/dual-atom catalysts in converting CO2/CO to C1 and C2 products, and methods of using spectroscopic information to determine the interfacial H2O and local pH at the electrode. Finally, the review provides perspectives on the future development of operando ATR-SEIRAS.

Key words: Electrochemical carbon dioxide, reduction, Single-atom catalyst, Electrochemical operando attenuated, total reflection surface-enhanced, infrared absorption spectroscopy, Reaction dynamic transformation, processes, Interfacial H2O