催化学报 ›› 2024, Vol. 62: 32-52.DOI: 10.1016/S1872-2067(24)60068-9
严靖a, 倪嘉琪a, 孙宏丽a,*(), 苏陈良a,*(
), 刘彬b,c,*(
)
收稿日期:
2024-03-21
接受日期:
2024-05-27
出版日期:
2024-07-18
发布日期:
2024-07-10
通讯作者:
电子信箱: 基金资助:
Jing Yana, Jiaqi Nia, Hongli Suna,*(), Chenliang Sua,*(
), Bin Liub,c,*(
)
Received:
2024-03-21
Accepted:
2024-05-27
Online:
2024-07-18
Published:
2024-07-10
Contact:
E-mail: About author:
Hongli Sun (Institute of Microscale Optoelectronics, Shenzhen University) received her bachelor’s and master’s degrees at Wuhan University of Technology, China in 2013 and 2016, respectively, and completed his doctoral degree at the Chinese University of Hongkong in 2019. After spending two years as postdoctoral fellow in Shenzhen University, China, she joined Institute of Microscale Optoelectronics at Shenzhen University as an Assistant Professor in March 2023. Her research focuses on photo(electro)catalysis for energy conversion and environmental remediation and in-situ/operando characterizations.Supported by:
摘要:
电催化二氧化碳还原反应(CO2RR)涉及多个电子和质子转移, 动态演变过程复杂. 具有结构简单性和均匀性的单原子催化剂(SACs)是研究上述复杂过程的理想模型催化剂, 有利于理解催化构效关系. 原位衰减全反射表面增强红外光谱技术为识别单原子催化CO2RR的动态演变过程提供了有利方法.
本文总结了原位红外光谱在电催化CO2RR研究中的应用: 首先, 简要介绍了电化学衰减全反射表面增强红外光谱的表面增强机制; 详细探讨了原位衰减全反射表面增强红外光谱技术在研究原子级金属催化剂催化CO2/CORR反应动态演变过程的关键作用; 简述了原位红外谱图确定界面水的相关信息以及电极局部pH值的定量方法. 原位电化学红外光谱技术加深了对CO2RR反应机制的理解, 揭示了催化剂结构、电解质种类、分子吸附方式等对反应活性和选择性的调控规律. 尽管研究已取得较大进展, 但由于电催化CO2RR的复杂性, 学者对该反应的认知仍不够全面和深入, 面临的机遇和挑战如下: (1) 精准辨识CO2RR关键中间体/生成物. 特别是当中间体/生成物的特征峰与其他峰重叠时, 精准识别相关特征峰将极具挑战. 一方面, 需进一步提高原位光谱技术分辨率; 另一方面, 近年来深度学习算法在光谱分析领域的应用为中间体/生成物混合特征峰的精准识别提供了有效方案, 此类算法能建立变量之间的关系, 实现光谱中特征信息的智能、精准提取; (2) 深入解析CO2RR机理和复杂的反应路径. 目前, 研究者尚难以通过直接实验手段明确CO2RR路径. 原位电化学红外光谱技术结合密度泛函理论(DFT)是明确CO2RR中间体和反应途径的可行方案, 能够进一步指导反应条件优化和催化剂结构设计; (3)建立工况下的原位CO2RR机理研究方案. 膜电极组件(MEA)电解槽通过使用膜直接连接阴极气体扩散电极和阳极, 有效解决了H型反应器的局限性, 具有工业应用前景. 然而, 基于MEA的工况条件CO2RR机制研究鲜有报道. 因此, 需要开发工况条件下的原位电化学光谱技术, 以探究三相界面分子尺度关键中间体/生成物动态演变, 并建立工况条件的CO2RR催化构效关系, 这将有助于提高工况下的选择性、转化效率, 以及实现更高价值的多碳产品的规模生产, 并进一步指导高效反应器设计.
综上, 本文详细综述了原位红外光谱在电化学CO2RR研究中的应用, 并对电催化CO2RR目前遇到的问题提出了解决方案, 希望对广大科研工作者利用原位红外光谱进一步深入研究电催化CO2RR提供参考和借鉴.
严靖, 倪嘉琪, 孙宏丽, 苏陈良, 刘彬. 原位衰减全反射表面增强红外光谱示踪单原子催化二氧化碳电还原反应中间体的研究进展[J]. 催化学报, 2024, 62: 32-52.
Jing Yan, Jiaqi Ni, Hongli Sun, Chenliang Su, Bin Liu. Progress in tracking electrochemical CO2 reduction intermediates over single-atom catalysts using operando ATR-SEIRAS[J]. Chinese Journal of Catalysis, 2024, 62: 32-52.
Fig. 3. Schematic diagrams illustrating the four in situ IR spectroscopy modes: transmission (a), external reflection (the resistance of the solution is high, resulting in a correspondingly slow potential response; the surface should be relatively smooth) (b), internal reflection Kretschmann (the resistance of the solution is low, resulting in a correspondingly rapid potential response (c); suitable for metal thin-film electrodes), and internal reflection Otto thin-layer modes (the resistance of the solution is high, resulting in a correspondingly slow potential response; suitable for powder electrodes and other non-mirror reflective electrodes) (d). (e) Intensity of the s and p components of incident and reflected beams. Reprinted with permission from Ref. [40]. Copyright 2019, John Wiley and Sons.
Fig. 4. Most commonly used geometries for IR experiments at the electrode-electrolyte interface: external (a) and internal (b) reflections. (c) Excitation of the localized surface plasmon resonance (LSPR). (d) Simulated electromagnetic field strength around a nanoparticle. (e) Schematic illustration showing the dipole change in the same/opposite direction as the dipole of a vibrational mode normal/parallel to the surface. Reprinted with permission from Ref. [40]. Copyright 2019, John Wiley and Sons.
Catalyst | Electrolyte | Modes for in situ IR spectroscopy | Intensity of in situ IR signals | Ref. | |
---|---|---|---|---|---|
Nonmetal phosphorus SAC (P-SAC-NG) | 0.5 mol L-1 KHCO3 | internal reflection | strong | [ | |
SnPc/CNT-OH | 0.1 mol L-1 K2SO4 | internal reflection | strong | [ | |
Pb1Cu SAA | 0.5 mol L-1 KHCO3 | internal reflection | strong | [ | |
Cu-SAs/HGDY | 0.5 mol L-1 KHCO3 | internal reflection | strong | [ | |
Ni SAC | 0.5 mol L-1 KHCO3 | no enhancement | weak | [ | |
Ni-NCN | 0.5 mol L-1 KHCO3 | no enhancement | weak | [ |
Table 1 Comparison of the intensity of in situ IR signals during CO2RR recorded using different enhancement modes.
Catalyst | Electrolyte | Modes for in situ IR spectroscopy | Intensity of in situ IR signals | Ref. | |
---|---|---|---|---|---|
Nonmetal phosphorus SAC (P-SAC-NG) | 0.5 mol L-1 KHCO3 | internal reflection | strong | [ | |
SnPc/CNT-OH | 0.1 mol L-1 K2SO4 | internal reflection | strong | [ | |
Pb1Cu SAA | 0.5 mol L-1 KHCO3 | internal reflection | strong | [ | |
Cu-SAs/HGDY | 0.5 mol L-1 KHCO3 | internal reflection | strong | [ | |
Ni SAC | 0.5 mol L-1 KHCO3 | no enhancement | weak | [ | |
Ni-NCN | 0.5 mol L-1 KHCO3 | no enhancement | weak | [ |
Fig. 5. (a) Schematic diagram illustrating the Ni-(CO)2 and Ni-CO models. (b) Synchrotron radiation IR absorption spectroscopy (SR-IRAS) spectra collected in the potential range of -0.2 to -0.8 VRHE in 0.5 mol L-1 KHCO3. Reprinted with permission from Ref. [80]. Copyright 2023, Springer Nature. (c) Schematic diagram illustrating the surface coverage of CO. In situ ATR-SEIRAS spectra of (d) P-SAC-NG collected in CO2-saturated 0.5 mol L-1 KHCO3 in the potential window of OCV to -1.1 V vs. RHE. Reprinted with permission from Ref. [17]. Copyright 2023, The Royal Society of Chemistry. (e) COOH* intermediate model. (f) Operando Fourier transform IR (FTIR) spectrum of Ni-NCN. Reprinted with permission from Ref. [85]. Copyright 2023, Elsevier.
Fig. 6. (a) Proposed reaction pathway of the CO2RR over the O-Sn-N4 site and identification of the surface reactive species. (b,c) Operando ATR-SEIRAS spectra of SnPc/CNT-OH collected at various applied cathodic potentials (from 0 to -1.5 V vs. RHE and from -1.5 V vs. RHE to 0 V) in CO2-saturated 0.1 mol L-1 K2SO4. Reprinted with permission from Ref. [88]. Copyright 2023, American Chemical Society. (d) Schematic diagram illustrating the selective adsorption of CO2 at Cu sites. (e,f) In situ ATR-FTIR spectra recorded at different applied potentials (without iR compensation) for the Pb1Cu SAA. Reprinted with permission from Ref. [91]. Copyright 2021, Springer Nature. (g) Schematic diagram illustrating the adsorption behaviors and material transformations of Cu-SnO2 and SnO2 during CO2RR under low/high reduction potentials. (h) In situ ATR-IR results of Cu-SnO2 (left) and SnO2 (right) recorded at different potentials. Reprinted with permission from Ref. [94]. Copyright 2023, American Chemical Society.
Fig. 7. (a) Proposed CO2RR pathway over Cu-SAs/HGDY. (b) In situ ATR-FTIR spectra of Cu-SAs/HGDY recorded in the potential range of -0.7 to -1.5?V vs. RHE. Reprinted with permission from Ref. [100]. Copyright 2023, John Wiley and Sons. (c) Schematic illustration showing the formation of *CHO intermediates at Cu sites. In situ ATR-IR spectra for BNC-Cu (d) and NC-Cu (e). Reprinted with permission from Ref. [104]. Copyright 2023, Springer Nature. (f) DFT-optimized structures of H-CoPc-CO (top) and H-CoPc-CO (bottom). (g) In situ FTIR spectra of CoPc/MWCNT measured at E = -0.3? ?to?-0.8?V vs. RHE. Reprinted with permission from Ref. [112]. Copyright 2023, Springer Nature. (h) Model of CoTAPc and iminium-CONs. (i) In situ ATR-SEIRAS spectra recorded over iminium-CONs and CoTAPc in a CO2-saturated 0.5 mol L-1 KHCO3 solution. Reprinted with permission from Ref. [113]. Copyright 2023, John Wiley and Sons.
Fig. 8. (a) Proposed CO2RR mechanism on a Bi-decorated Cu alloy [BiCu(111)-SAA]. Detection of the reaction intermediates of the CO2RR on both BiCu-SAA and Cu-nano (Cu-N) catalysts. (b) Time-dependent in situ SEIRAS spectra obtained at -1.10 V vs. RHE. (c) Operando SR-FTIR spectra recorded at different potentials. Reprinted with permission from Ref. [118]. Copyright 2023, John Wiley and Sons. (d) Proposed CO2RR mechanism on a single-atom Ni with nanoscale Cu (Cu/Ni-NAC) catalyst. (e) In situ SEIRAS spectra of Cu/Ni-NAC catalysts recorded under CO2RR conditions. Reprinted with permission from Ref. [121]. Copyright 2022, American Chemical Society. (f) Proposed CO2RR mechanism over PcCu-Cu-O. (g,h) In situ ATR-FTIR spectra of PcCu-Cu-O recorded during electrochemical CO2RR. Reprinted with permission from Ref. [123]. Copyright 2021, American Chemical Society.
Fig. 9. (a) Local active site structure and intermediate state. (b) Operando SR-FTIR spectra of Cu/N0.14C. (c) Operando SR-FTIR spectra recorded over Cu/N0.14C in a D2O electrolyte. Reprinted with permission from Ref. [126]. Copyright 2022, Springer Nature. (d) Proposed mechanism of the CO2 reduction to EtOH over CuSn-HAB. (e) Time-dependent operando ATR-FTIR spectra recorded on CuSn-HAB at -0.57 V vs. RHE in a 1 mol L-1 KOH electrolyte. Reprinted with permission from Ref. [131]. Copyright 2023, American Chemical Society. (f) Electrocatalytic CO2RR to CH3COOH mechanism. (g) In situ ATR-FTIR spectra of PcCu-TFPN recorded during electrocatalytic CO2RR. Reprinted with permission from Ref. [135]. Copyright 2022, John Wiley and Sons.
Fig. 10. In situ ATR-SEIRAS spectra recorded over TeN2-CuN3 (a) and TeN3 (b) in a CO2-saturated KHCO3 solution. (c) Corresponding 3D intensity profiles of two pairs of DAC sites. Reprinted with permission from Ref. [141]. Copyright 2023, Springer Nature. In situ ATR-SEIRAS spectra recorded in the potential window of 0 to -0.9 V vs. RHE over Fe1/PNG (d) and Fe1/NG (e). Gaussian fits of three O-H stretching modes over Fe1/PNG (f) and Fe1/NG (g). Reprinted with permission from Ref. [145]. Copyright 2023, John Wiley and Sons. (h) Comparison of the ATR-SEIRAS spectra recorded over Fe1-NC, Mo1-NC, and DMCPFe1-Mo1-NC at -0.6 V vs. RHE. (i) In situ ATR-SEIRAS spectra recorded over DMCPFe1-Mo1-NC in CO2-saturated 0.5 mol L-1 KHCO3. (j) Proposed CO2RR mechanism of DMCPFe1-Mo1-NC. Reprinted with permission from Ref. [148]. Copyright 2023, American Chemical Society.
Fig. 11. Operando ATR-SEIRAS spectra of the CORR over B-CoPc-400 (a,c) and M-CoPc-400 (b,d) in CO-saturated 0.5 mol L-1 KOH. The spectra were collected at constant potentials with a 0.1 V interval in the cathodic direction from OCP to -0.9 V (vs. RHE). Reprinted with permission from Ref. [153]. Copyright 2023, Springer Nature. (e,f) In situ ATR-SEIRAS spectra recorded during CO electroreduction on Cu@NH2 and Cu in CO-saturated 0.5 mol L-1 KOH. (g) Top view images of *CO + H*, transition state 1, *CHO, *CHO + *CO, transition state 2, and *OCCHO on Cu@NH2(111) and Cu. Reprinted with permission from Ref. [155]. Copyright 2023, American Chemical Society.
Fig. 12. (a) Real-time ATR-SEIRAS spectra recorded during the cathodic scan over a Cu thin-film electrode. (b) ATR-IR spectra recorded over a bare ZnSe prism in a 0.1 mol L-1 K2CO3 + 0.1 mol L-1 KOH electrolyte. (c) Real-time ATR-SEIRAS spectra recorded during the anodic scan over a Cu thin-film electrode in a CO2-saturated 0.1 mol L-1 KHCO3 solution. Reprinted with permission from Ref. [102]. Copyright 2017, American Chemical Society. ATR-SEIRAS spectra (black line) and peak fits (red dashed line) in 0.1 mol L-1 NaHCO3 at -0.9 V vs. RHE under 1 atm CO2 (d) and 0.1 V vs. RHE at pH = 8.97 (e). Carbonate (purple) and bicarbonate (blue) peak positions and widths were obtained from the Gaussian fits of the pure carbonate (pH = 12.95) and bicarbonate (pH = 7.55) spectra. Reference spectra were collected in water at OCP. CO2 (aq.) spectra as a function of the potential without stirring (f) and under stirring at 1800 r min-1 (g) in CO2-saturated 0.5 mol L-1 NaHCO3. Surface pH (left axis) and the corresponding change in the proton ηc versus the uncorrected potential (left axis) in CO2-saturated 0.25 mol L-1 NaHCO3 (h), 0.5 mol L-1 NaHCO3 without stirring (solid squares) and under stirring at 1800 r min-1 (open squares) (i), and1.0 mol L-1 NaHCO3 (j). (k) Surface pH change versus current density in CO2-saturated 0.25 (red), 0.5 (purple), and 1.0 mol L-1 (black) NaHCO3 with (open squares) and without (filled squares) stirring. Reprinted with permission from Ref. [158]. Copyright 2018, American Chemical Society.
|
[1] | 穆楠, 薄婷婷, 胡玉高, 徐瑞欣, 刘彦昱, 周伟. 基于铁电In2Se3极化切换的N2还原单原子催化剂[J]. 催化学报, 2024, 63(8): 244-257. |
[2] | 吴维凡, 范晋歌, 赵振宏, 潘建敏, 杨静, 阎兴斌, 詹怡. 馄饨结构的KB@Co-C3N4在中性电解质中作为锌空气电池的高活性和稳定性氧催化剂[J]. 催化学报, 2024, 60(5): 178-189. |
[3] | 虞周楠, 张磊磊, 谈源龙, 井日峥, 曹宏晨, 楼才溢, 格日乐, 王军虎, 王爱琴, 张涛. SnCl2促进的Pt1/PS-PPh2催化剂高选择性催化高碳烯烃氢甲酰化反应[J]. 催化学报, 2024, 60(5): 316-326. |
[4] | 李沐霖, 谢一萌, 宋静婷, 杨级, 董金超, 李剑锋. 碳载金属单原子催化剂的电合成氨进展[J]. 催化学报, 2024, 60(5): 42-67. |
[5] | 宋宁, 江吉周, 洪士欢, 王赟, 李春梅, 董红军. 以金属有机骨架为源制备单原子电催化剂用于能量转换的最新进展[J]. 催化学报, 2024, 59(4): 38-81. |
[6] | 吴德贵, 熊孝根, 赵中栋, 宋树芹, 丁朝斌. 揭示配体拓扑结构对Fe-Nx-C单原子催化剂表面氧还原反应中间体吸附的影响[J]. 催化学报, 2024, 59(4): 214-224. |
[7] | 张俊磊, 刘文聪, 刘彪, 段晓光, 敖志敏, 朱明山. 单原子活化过一硫酸盐性能更好?与金属氧化物耦合可能更高效[J]. 催化学报, 2024, 59(4): 137-148. |
[8] | 蒋兴星, 赵雨昕, 孔艳, 孙建桔, 冯上照, 胡琪, 杨恒攀, 何传新. 充分稳定和暴露的铜基异质结实现CO2高效电还原制乙醇[J]. 催化学报, 2024, 58(3): 216-225. |
[9] | 别泉泉, 尹海波, 王云龙, 苏海伟, 彭悦, 李俊华. Cu单原子与氧空位协同作用增强电催化CO2还原中C2液相产物活性[J]. 催化学报, 2024, 57(2): 96-104. |
[10] | 张倩, 江训柱, 苏杨, 赵阳, 乔波涛. 锐钛矿型TiO2负载Ni单原子用于催化丙烷脱氢[J]. 催化学报, 2024, 57(2): 105-113. |
[11] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[12] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[13] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[14] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[15] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||