催化学报 ›› 2024, Vol. 59: 214-224.DOI: 10.1016/S1872-2067(23)64621-2

• 论文 • 上一篇    下一篇

揭示配体拓扑结构对Fe-Nx-C单原子催化剂表面氧还原反应中间体吸附的影响

吴德贵a,1, 熊孝根b,1, 赵中栋a, 宋树芹c,*(), 丁朝斌a,*()   

  1. a中山大学化学工程与技术学院, 广东珠海 519082
    b中山大学中法核工程与技术学院, 广东珠海 519082
    c中山大学材料科学与技术学院, 广东广州 510006
  • 收稿日期:2023-12-31 接受日期:2024-02-07 出版日期:2024-04-18 发布日期:2024-04-15
  • 通讯作者: *电子邮箱: dingzhb@mail.sysu.edu.cn (丁朝斌), stsssq@mail.sysu.edu.cn (宋树芹).
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    国家自然科学基金(21978331);国家自然科学基金(21975292);国家自然科学基金(22273121);国家自然科学基金重大研究计划培养计划(92061124);广东省基础与应用基础研究基金(2021A1515010167);广东省基础与应用基础研究基金(2022A1515011196);广州市重点研发计划/计划揭牌旗舰项目(20220602JBGS02);广州市基础与应用基础研究项目(202201011449);广东省燃料电池技术重点实验室科研基金项目(FC202220);广东省燃料电池技术重点实验室科研基金项目(FC202216);中山大学“百人计划”引进人才启动经费(76110-12230015)

Unravelling ligand topology effect on the binding of oxygen reduction reaction intermediates on Fe-Nx-C single-atom catalysts

De-Gui Wua,1, Xiao-Gen Xiongb,1, Zhong-Dong Zhaoa, Shu-Qin Songc,*(), Zhao-Bin Dinga,*()   

  1. aSchool of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
    bSino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, Guangdong, China
    cSchool of Materials Science and Technology, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
  • Received:2023-12-31 Accepted:2024-02-07 Online:2024-04-18 Published:2024-04-15
  • Contact: *E-mail: dingzhb@mail.sysu.edu.cn (Z.-B. Ding), stsssq@mail.sysu.edu.cn (S.-Q. Song).
  • About author:

    1 Contributed equally to this work.

  • Supported by:
    National Natural Science Foundation of China(21978331);National Natural Science Foundation of China(21975292);National Natural Science Foundation of China(22273121);Training Program of the Major Research Plan of the National Natural Science Foundation of China(92061124);Guangdong Basic and Applied Basic Research Foundation(2021A1515010167);Guangdong Basic and Applied Basic Research Foundation(2022A1515011196);Guangzhou Key R&D Program/Plan Unveiled Flagship Project(20220602JBGS02);Guangzhou Basic and Applied Basic Research Project(202201011449);The Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202220);The Research Fund Program of Guangdong Provincial Key Laboratory of Fuel Cell Technology(FC202216);startup grant of the “Hundred Talents Program” at Sun Yat-sen University(76110-12230015)

摘要:

过渡金属单原子氮掺杂碳催化剂(TM-N-C SAC)因其更高的金属原子效率而被认为是提升氧还原反应(ORR)效率的重要途径. TM-N-C SAC反应中心的活性与配体结构密切相关, 构建基于配体结构的ORR活性描述符是高效设计高催化活性单原子催化剂的关键. 然而目前大多配体描述符基于催化剂的综合表观性质, 如OH吸附能和金属中心d带中心等, 其获取仍需进行额外计算, 不利于通过配体结构快速推测反应活性; 而目前基于配体结构拓扑参数, 如金属中心原子及其配位原子属性、数量等设计的描述符存在对催化活性的描述较差或仅适用于特定配体等问题. 解决该难题的关键在于理清OH与TM-N-C SAC成键的微观机制.

本文全面考察了ORR中间体OH在21种具有不同氮原子数量、位置以及不同配体尺寸的卟啉型FeNxC SAC表面上的吸附机制. 对有限尺寸卟啉型Fe-Nx-C (x = 0-4) SAC模型上OH吸附的密度泛函理论计算结果表明, OH吸附能与SAC的配位氮原子的数量并不线性相关, 且受氮原子排布方式的影响. 利用能量分解分析(EDA)将OH与SAC的成键作用分解, 重点讨论氮的掺入对静电作用、泡利排斥作用和轨道作用的影响. 针对静电作用, Bader分析与电荷密度差值分析结果表明, 氮的掺入一方面将电荷向配位原子上聚集, 且配位原子上电荷数随氮原子数量增加而线性增加; 另一方面大幅增强铁-配体键(Fe-L)的离子性, 减少铁与配体间的电子密度, 提高铁中心电子能量, 并从而改变静电作用能量. 对于泡利排斥作用, 其影响因素与静电作用类似, 因而作用强度与静电作用强度呈较好线性关系. 对于轨道作用, 结合扩展过渡态-化学价的自然轨道(ETS-NOCV)和电子定域化(LOL-π)等综合分析发现, 氮原子的掺入破坏了配体的离域π键, 从而影响OH与配体的轨道在成键时的相互作用. 此外, 对配体大小影响的研究表明, 配体边缘原子仅当出现在包含配位原子的环上时才对OH与SAC成键有较大影响, 这充分证明了OH吸附这一过程的局域性.

综上, 本文提供了Fe-N-C型SAC上完整的OH吸附键形成机制, 强调了配位原子及其近邻原子对吸附活性的影响, 为构建基于SAC拓扑特征的ORR活性描述符, 实现SAC配体的快速筛选提供参考.

关键词: 单原子催化剂, 氧还原反应, 配体拓扑结构, 能量分解分析, 密度泛函理论

Abstract:

The rational design of Fe-N-C single-atom catalysts (SAC) requires a priori estimation of its activity with descriptors that require no additional calculations. In this study, we conducted a thorough investigation into the effect of the amount and the location of N and the position of edge atoms on intermediate adsorption energies, and then unveiled the critical topological factors. Our density functional theory calculations, energy decomposition analysis and bonding analysis on OH adsorption on finite graphitic Fe-Nx-C (x = 0-4) models discover that nitrogen not only concentrates electrons on the ligand onto donor atoms but also induces a more ionic nature in the Fe-ligand (Fe-L) bonds and partially disrupts the aromaticity of the ligand. The latter effect strongly correlates to the location of N. These effects influence the electrostatic, Pauli repulsive and orbital interactions that are involved in the Fe-O bond formation. Furthermore, our investigation also reveals that the size of SAC plays a role in binding only when the edge atom is situated in the ring containing donor atoms. Our work for the first time provides a comprehensive mechanism of OH adsorption on SAC and the influence of N and the size. It emphasizes the necessity of considering the quantity and the location of nitrogen, as well as the atoms surrounding the donor atoms when developing descriptors.

Key words: Single-atom catalysts, Oxygen reduction reaction, Ligand topology effect, Energy decomposition analysis, Density functional theory