催化学报 ›› 2024, Vol. 59: 38-81.DOI: 10.1016/S1872-2067(23)64622-4

• 综述 • 上一篇    下一篇

以金属有机骨架为源制备单原子电催化剂用于能量转换的最新进展

宋宁a, 江吉周b,*(), 洪士欢a, 王赟a, 李春梅a, 董红军a,*()   

  1. a江苏大学化学化工学院, 绿色化学与化工技术研究院, 江苏镇江 212013
    b武汉工程大学环境生态与生物工程学院, 化学与环境工程学院, 绿色化学工程过程教育部重点实验室, 磷资源开发利用教育部工程研究中心, 新型催化材料湖北省工程研究中心, 湖北武汉 430205
  • 收稿日期:2023-12-29 接受日期:2024-02-06 出版日期:2024-04-18 发布日期:2024-04-15
  • 通讯作者: *电子信箱: donghongjun6698@aliyun.com (董红军), 027wit@163.com (江吉周).
  • 基金资助:
    国家自然科学基金(52072153);国家自然科学基金(62004143);中国博士后科学基金(2021M690023);湖北省重点研发计划(2022BAA084);江苏省博士后科学基金(2021K176B);江苏省研究生科研创新计划(KYCX22_3694);江苏省研究生科研创新计划(KYCX23_3649);镇江市重点研发计划员(SH2021021)

State-of-the-art advancements in single atom electrocatalysts originating from MOFs for electrochemical energy conversion

Ning Songa, Jizhou Jiangb,*(), Shihuan Honga, Yun Wanga, Chunmei Lia, Hongjun Donga,*()   

  1. aInstitute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
    bSchool of Environmental Ecology and Biological Engineering, School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Novel Catalytic Materials of Hubei Engineering Research Center, Wuhan Institute of Technology, Wuhan 430205, Hubei, China
  • Received:2023-12-29 Accepted:2024-02-06 Online:2024-04-18 Published:2024-04-15
  • Contact: *E-mail: donghongjun6698@aliyun.com (H. Dong), 027wit@163.com (J. Jiang).
  • About author:Jizhou Jiang is currently a full Professor in School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology (WIT). He completed his PhD in the Huazhong University of Science & Technology (HUST) in 2015. This was followed by a period of postdoctoral research at National University of Singapore under the supervision of Prof Andrew T. S. Wee from 2015 to 2017. His current research focuses on the preparation of novel micro/nano-materials, 2D materials, carbon materials and their applications of photo/electro-catalysis.
    Hongjun Dong is an associate researcher at the Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, China. He received his BS and MS degrees in the College of Science, Yanbian University, in 2003 and 2006, respectively. He received his PhD degree in the School of Chemistry and Chemical Engineering, Harbin Institute of Technology in 2015. He worked as a postdoctoral research fellow in the group of Prof. Can Xue in Materials Science and Engineering at Nanyang Technological University in Singapore from 2015 to 2016. His research interests include the application of photocatalysis techniques in the degradation of pollutants, hydrogen generation from water splitting, fuel conversion of carbon dioxide, etc.
  • Supported by:
    The National Natural Science Foundation of China(52072153);The National Natural Science Foundation of China(62004143);The Postdoctoral Science Foundation of China(2021M690023);The Key R&D Program of Hubei Province(2022BAA084);The Postdoctoral Science Foundation of Jiangsu Province(2021K176B);The Graduate Research Innovation Program of Jiangsu Provincial(KYCX22_3694);The Graduate Research Innovation Program of Jiangsu Provincial(KYCX23_3649);The Zhenjiang Key R&D Programmers(SH2021021)

摘要:

化石燃料的过度使用导致了严重的环境问题, 因此, 迫切需要人们对能源生产和储存方式进行变革. 电催化在清洁能源转换中发挥着重要的作用, 是推动可持续能源生产技术不断发展的重要驱动力. 单原子催化剂(SACs)因具有独特的物理和化学性质而表现较高的电催化活性, 因而成为研究热点. 通过调控金属单原子的配位环境, 可以有效调节SACs的几何和电子结构, 进而优化电催化效率. 金属有机骨架(MOFs)具有孔结构丰富、表面积大和配体可调节等结构特性, 因此在制备SACs方面表现出巨大潜力. 本文旨在总结以MOFs为前驱体制备SACs的最新进展, 深入探讨单原子空间分布、配位结构和电子结构等局部配位环境对电催化活性的影响. 此外, 对密度泛函理论在研究SACs电催化反应中的应用进行了讨论和分析.

本文系统地介绍了以MOFs为前驱体制备SACs的合成策略、表征方法、电催化应用和反应机理的研究进展, 并对其未来的发展进行了展望. 首先, 概述了以MOFs为原料制备SACs的多种策略, 分析了各自的优缺点及改进方向. 然后, 介绍了SACs的结构表征及电催化反应机理的原位表征技术, 剖析了现有技术面临的挑战. 再后, 重点介绍了一些经典的制备SACs案例, 对以MOFs为源制备的SACs在电催化析氢反应、析氧反应、氧还原反应、CO2还原反应及氮还原消除等的应用进行了系统总结, 并简要回顾了其在光催化、热催化、酶催化方向的应用. 最后, 探讨了SACs面临的挑战及解决方案: (1) 目前采用的以MOFs为源制备SACs方法存在能耗高、污染环境等问题, 应开发出环保可持续的合成方法以降低生产成本, 并将其对环境的影响降到最低. (2) 应利用原子水平控制技术制备双原子或三原子多功能电催化剂, 并根据SACs的应用场景调整其配位结构, 以优化性能. (3) 需研发更先进的测试仪器, 解决测试结果区域化、效率低、测试与实际结果存在偏差以及测试成本较高等问题. (4) 基于SACs的结构特性, 结合先进的测试仪器与理论计算, 深入探究反应机理, 为新一代电催化剂的设计提供指导. (5) 随着信息技术的多维、多样和复杂化发展, 可以借助机器学习, 设计和开发新型SACs, 推动电催化领域的持续创新.

综上, 本文系统地介绍了以MOFs为材料制备SACs的优势、设计原理、表征手段, 并对SACs在电催化应用方面的研究进展与面临的挑战进行了总结, 希望能为SACs相关方面的研究提供有价值的参考和借鉴.

关键词: 电催化, 金属-有机框架化合物, 单原子催化剂, 合成策略, 能源转化反应

Abstract:

Significant environmental issues have emerged from the increasing usage of fossil fuels, stimulating extensive interest in improving efficient energy production and storage systems. Electrocatalysis, which plays a crucial role in clean energy conversion, could foster the advancement of future sustainable technologies. Electrocatalytic activity is greatly enhanced by single-atom catalysts (SACs) because of their distinctive physical and chemical frameworks. The coordination environment can influence the geometry and electronic structure of SACs, contributing to the escalation of the efficiency of electrocatalytic for meeting practical needs. Due to their numerous micropores, greater surface area, and adjustable organic ligands, metal-organic frameworks (MOFs) have been shown to be an excellent approach to developing SACs. This review provides a complete summary of current instances involving the synthesis of SACs originating from MOFs. In addition, this review also addresses the impact of single-atoms (SAs) on electrocatalytic activity within the local coordination environment, including the spatial distribution, coordination structure, and local electronic structure. Besides, the density functional theory that provides theoretical support for the electrocatalytic reaction has summarized and analyzed the application of SACs in the electrocatalytic field.

Key words: Electrocatalysis, Metal-organic framework, Single-atom catalyst, Synthetic strategy, Energy conversion reaction