催化学报 ›› 2024, Vol. 59: 82-96.DOI: 10.1016/S1872-2067(23)64636-4
收稿日期:
2023-12-06
接受日期:
2024-02-24
出版日期:
2024-04-18
发布日期:
2024-04-15
通讯作者:
*电子信箱: 基金资助:
Yi Xiea, Zhanyou Xua, Qian Lua,b, Ying Wanga,*()
Received:
2023-12-06
Accepted:
2024-02-24
Online:
2024-04-18
Published:
2024-04-15
Contact:
*E-mail: About author:
Ying Wang (Department of Chemistry, the Chinese University of Hong Kong.) Prof. Ying Wang completed the D.Phil degree in electrochemistry with Prof. Richard G. Compton at Oxford University. She worked as a postdoctoral research fellow in electrocatalytic CO2 reduction reaction (CO2RR) with Prof. Thomas J Meyer at the University of North Carolina at Chapel Hill and Prof. Edward Sargent at the University of Toronto. She is now an assistant professor at the Department of Chemistry at the Chinese University of Hong Kong. The Wang group at CUHK focuses on understanding electrode processes and electrochemical systems in electrocatalysis, especially for CO2RR.
Supported by:
摘要:
二氧化碳电化学还原为高附加值的化学品和原料是一种具有应用前景的负碳技术. 在过去十几年里, 研究人员在碱性和中性电解质中进行了大量的二氧化碳电还原研究, 并在活性、选择性和稳定性方面取得了很多进展. 然而, 二氧化碳与碱性电解液反应生成碳酸盐, 导致碳利用率较低(远低于产业化应用要求). 因此, 未来二氧化碳电还原领域面临的关键挑战是如何有效提高碳利用率. 为解决这一挑战, 在酸性电解质中进行二氧化碳电还原成为了一个可行的方案, 它可以有效避免“碳酸盐问题”的发生. 而基于双极膜的二氧化碳电解槽技术, 则允许阴/阳极在不同pH的电解质中运行, 是提高碳利用率的有效方案之一.
本文首先介绍了双极膜的运行模式、热力学过程、物质传输现象、水解离/合成过程以及极限电流密度的起源, 并总结了近期在双极膜优化方面取得的进展. 然后, 进一步聚焦于双极膜在常用的三类高效二氧化碳电解槽(流通池电解槽、膜电极电解槽和固态电解质电解槽)中的应用, 详细探讨了其研究进展及所面临的挑战, 并强调了针对不同结构电解槽的优化策略. 值得一提的是, 基于反向偏置双极膜的电解槽设计在促进质子传输至阴极、抑制碳酸盐形成方面表现出显著优势, 进而有效提高了碳利用率. 然而, 大的质子通量同时也促进了竞争性的析氢反应, 这在一定程度上抑制了二氧化碳转化为多碳产物. 为了解决这一问题, 流通池电解槽中的阴极电解液可以被用作缓冲层, 通过调节阴极液的组成和厚度, 实现电极表面在较高的pH下进行二氧化碳电还原, 同时本体电解液维持在酸性, 从而促进生成的碳酸盐再生为二氧化碳. 另一方面, 膜电极电解槽, 又称零间隙电解槽, 其设计特点在于催化剂层和膜直接接触, 这种结构降低了电解液引起的电压损耗, 提高了电解效率. 然而, 这种紧密接触也导致阴极表面的化学环境受到膜的强烈影响. 大量质子通过膜传输至阴极, 导致催化剂处于强酸性环境中, 这为开发高效且稳定的二氧化碳还原电催化剂带来了很大挑战. 近期, 多种策略已成功应用于设计能够在pH ≤ 1电解质中稳定运行的二氧化碳还原催化剂, 包括双金属催化剂、杂原子掺杂金属催化剂和先进分子催化剂. 此外, 也可以通过构建界面缓冲层来精细调节局部pH值并优化阴极表面化学环境, 从而进一步提升膜电极电解槽中二氧化碳电还原的选择性. 为了实现商业应用, 二氧化碳电解槽需要直接生成高浓度的产品, 以减少后续的分离成本. 为此, 固态电解质二氧化碳电解槽提供了一种有效的解决方案. 通过在阴离子交换膜和阳离子交换膜之间引入固态电解质, 使得阴极表面形成的带负电物质(例如CH3COO-)能够顺利通过阴离子交换层并输送到固态电解质中, 随后与阳极提供的质子结合, 形成高纯度液体产品. 最后, 本文提出了双极膜二氧化碳电解槽面临的机遇和挑战, 其中包括: (1) 开发具有高离子选择性、高机械稳定性和低膜阻的新型双极膜; (2) 开发对高附加值产品具有高本征活性和选择性的新型催化剂; (3) 构筑具有高效气/液/电子传输的气体扩散电极; (4) 设计低能耗和高稳定性的电解槽.
综上所述, 本文详细介绍了基于反向偏置双极膜的二氧化碳电解槽在研究进展以及工业应用方面的可行性, 为未来开发具有高碳利用率和能量效率的二氧化碳还原技术提供了参考.
谢逸, 徐湛友, 卢千, 王莹. 构建高效稳定的低温反向偏置双极膜电解槽用于二氧化碳还原[J]. 催化学报, 2024, 59: 82-96.
Yi Xie, Zhanyou Xu, Qian Lu, Ying Wang. Construction of efficient and stable low-temperature reverse-bias bipolar membrane electrolyser for CO2 reduction[J]. Chinese Journal of Catalysis, 2024, 59: 82-96.
Catalyst | Membrane | jtotal (mA cm-2) | Major product | FE of major product (%) | Stability (> 90% retention) | SPCE of major product (%) | EE of major product (%) | Ref. |
---|---|---|---|---|---|---|---|---|
SS-Cu | BPM | 300 | C2+ | 52 | 1000 h | N/A* | 18.2 | [ |
Cu-PTFE | BPM | 300 | C2+ | 65 | 14 h | 69 | 17 | [ |
Cu NPs | BPM | 200 | C2H4 | 42 | 40 h | 12 | 12 | [ |
Ag NPs | BPM | 100 | CO | 65 | 24 h | N/A | 24 | [ |
[Ni(CycCOOH)]2+ | BPM | 100 | CO | 33 | N/A | N/A | 9.5 | [ |
Sputtered Ag | BPM | 200 | CO | 50 | N/A | 9 | 14 | [ |
SSC@Cu NPs-Cu PTFE | CEM | 1200 | C2+ | 45 | 12 h | 50 | N/A | [ |
Cu-TE | CEM | 1000 | C2+ | 55-60 | 68 h | N/A | N/A | [ |
Cu-Pd | CEM | 500 | C2+ | 87 | 4.5 h | 60 | N/A | [ |
COF:PFSA/Cu-PTFE | CEM | 200 | C2+ | 75 | 10 h | 75 | 25 | [ |
CuBaOx | AEM | 400 | EtOH | 61 | 20 h | N/A | N/A | [ |
F-Cu | AEM | 1600 | C2H4 | 65 | N/A | 2.6 | N/A | [ |
SSC@Cu-PTFE | AEM | 1500 | C2H4 | 65-75 | < 1 h | 2.7 | N/A | [ |
Cu-Mg | AEM | 1000 | C2H4 | 70 | 48 h | 1.8 | N/A | [ |
N-arylpyridinium @Cu-PTFE | AEM | 120 | C2H4 | 64 | 190 h | < 1 | 20 | [ |
Cu(100) | AEM | 120 | C2H4 | 55.8 | 4.5 h | 1.7 | 26.4 | [ |
AEM | 500 | C2+ | 70 | 2.5 h | 13.2 | N/A |
Table 1 Performance of recently reported CO2 electrolyser with current density higher than 100 mA cm-2.
Catalyst | Membrane | jtotal (mA cm-2) | Major product | FE of major product (%) | Stability (> 90% retention) | SPCE of major product (%) | EE of major product (%) | Ref. |
---|---|---|---|---|---|---|---|---|
SS-Cu | BPM | 300 | C2+ | 52 | 1000 h | N/A* | 18.2 | [ |
Cu-PTFE | BPM | 300 | C2+ | 65 | 14 h | 69 | 17 | [ |
Cu NPs | BPM | 200 | C2H4 | 42 | 40 h | 12 | 12 | [ |
Ag NPs | BPM | 100 | CO | 65 | 24 h | N/A | 24 | [ |
[Ni(CycCOOH)]2+ | BPM | 100 | CO | 33 | N/A | N/A | 9.5 | [ |
Sputtered Ag | BPM | 200 | CO | 50 | N/A | 9 | 14 | [ |
SSC@Cu NPs-Cu PTFE | CEM | 1200 | C2+ | 45 | 12 h | 50 | N/A | [ |
Cu-TE | CEM | 1000 | C2+ | 55-60 | 68 h | N/A | N/A | [ |
Cu-Pd | CEM | 500 | C2+ | 87 | 4.5 h | 60 | N/A | [ |
COF:PFSA/Cu-PTFE | CEM | 200 | C2+ | 75 | 10 h | 75 | 25 | [ |
CuBaOx | AEM | 400 | EtOH | 61 | 20 h | N/A | N/A | [ |
F-Cu | AEM | 1600 | C2H4 | 65 | N/A | 2.6 | N/A | [ |
SSC@Cu-PTFE | AEM | 1500 | C2H4 | 65-75 | < 1 h | 2.7 | N/A | [ |
Cu-Mg | AEM | 1000 | C2H4 | 70 | 48 h | 1.8 | N/A | [ |
N-arylpyridinium @Cu-PTFE | AEM | 120 | C2H4 | 64 | 190 h | < 1 | 20 | [ |
Cu(100) | AEM | 120 | C2H4 | 55.8 | 4.5 h | 1.7 | 26.4 | [ |
AEM | 500 | C2+ | 70 | 2.5 h | 13.2 | N/A |
Fig. 1. (a) Performance comparison of alkaline and acidic CO2RR electrolyser. Schematic illustration of CO2 electrolyser with AEM (b), CEM (c), forward-bias BPM (d), and reverse-bias BPM (e). (f) Different anode catalysts are used under acidic, alkaline, and neutral pH. (g) Current density and reaction time by using different anode catalysts [21]. Copyright 2022, American Chemical Society.
Fig. 3. Functionalities from CEM (left) and AEM (right) (a) and their combination in a BPM (b) [1]. Copyright 2022, Springer Nature. (c,d) Performance in forward-bias BPM electrolyser. (c) C2H4 and voltage stability at 50 mA cm-2 [40]. Copyright 2021, American Chemical Society. (d) A picture of BPM after funning for 2 h at 50 mA cm-2 [40]. Ion migration in forward-bias BPM configuration leads to water, salt, and gas accumulation at the bipolar junction and device failure. Copyright 2021, American Chemical Society.
Fig. 4. (a) Voltage distribution of an BPM electrolyser [43]. Copyright 2021 American Chemical Society. (b) Charge distribution, electric field, electrostatic potential and chemical potential of BPM at open circuit (OCV) [69]. Copyright 2020, American Chemical Society. (c) Qualitative i-V curve at forward bias and reverse bias [53]. Copyright 2020, Elsevier B.V. (d) A schematic i-V curve at reverse bias in salt electrolyte [70]. Copyright 2002, American Chemical Society. i-V curve at reverse bias for concentrations of 0.01, 0.1, 1 and 3 mol L-1 of H2SO4 and K2HPO4/K2HPO4 (e) and 0.1, 1, and 3 mol L-1 of KOH and K2HPO4/K2HPO4 (f) [71]. Copyright 2018, the Royal Society of Chemistry.
Fig. 5. Strategies for BPM optimisation. (a) Schematic representation of (1) ohmic losses, (2) water dissociation reaction, and (3) diffusion boundary layer [63]. Copyright 2019, Royal Society of Chemistry. (b) Water dissociation in BPM electrolysers with thinner CEL [95]. Copyright 2020, American Chemical Society. (c) Performance of alkaline, acidic, and BPM electrolysers [75]. Copyright 2020, AAAS. Performance of BPM electrolysers with various water dissociation catalysts at 450 mA cm-2 (d) and 150 mA cm-2 (e) [80]. Copyright 2022, Springer Nature. (f) Cross-section scanning electron microscope images of BPM with 3D junction [76]. Copyright 2018, Royal Society of Chemistry. (g) Voltage increases during testing at 500 mA cm-2 for 14 h for FBM and 3D BPM [98]. Copyright 2020, American Chemical Society. (h) Schematic of multi-step 3D “mortise-tenon joint” structure interface fabrication processes [99]. The 3D physically interlocked interface maximises the catalytic active area and physical contact area for efficient water dissociation and durable operation. Copyright 2023, Springer Nature.
Fig. 6. Illustration of CO2 electrolysers for industrially relevant performance. (a) Flow cell electrolyser. (b) Membrane-assembly-electrode (MEA) electrolyser. (c) CO2 electrolyser with solid-state electrolyte (SSE).
Fig. 7. Optimisation and performance of CO2RR in flow cell with bulk acidic media. (a) Schematic illustration and mass transport in the BPM-based flow electrolyser with aqueous catholyte for CO2RR [24]. Copyright 2022, Springer Nature. (b) The simulated pH distribution near the cathode surface with different catholyte (K2SO4) chamber thickness. The surface acidity increases as the distance between the cathode and BPM decreases [24]. Copyright 2022, Springer Nature. (c) The total CO2 single-pass utilisation with different thicknesses of catholyte and input CO2 flow rates [24]. Copyright 2022, Springer Nature. (d) Proposed reaction mechanism and enhanced C-C coupling for CO2-to-C2H4 on F-Cu catalyst. Purple: potassium; blue: fluorine; red: oxygen; grey: carbon; white: hydrogen [4]. Copyright 2022, Springer Nature. (e) Relationship between C2H4 FE and calculated Bader charge for the nitrogen atom of the N-aryl-substituted tetrahydro-bipyridines prepared from different N-arylpyridinium additives. The structure of additive 1 is shown in the bottom left [34]. Copyright 2020, Springer Nature. (f) Product distribution of CO2RR in electrolytes with pH = 2 containing different Na+:K+ ratios under 220 mA cm-2 [116]. Copyright 2022, Wiley-VCH GmbH. (g) Schematic illustration of ionic environment and transport near the cathode surface functionalised by the cation-augmenting layer (CAL) [28]. Copyright 2021, AAAS. (h) FEs towards H2 and CO2RR products and SPCE on CAL-modified Cu electrode at 1.2 A cm-2 with varying CO2 flow rates [28]. Copyright 2021, AAAS. (i) Stabilisation of CO2RR intermediates with significant dipole moments by cation-introduced local electrical field [119]. Copyright 2017, American Chemical Society.
Fig. 8. Optimisation and performance of CO2RR in BPM-base MEA (BPMEA) electrolyser. (a) Current efficiency for zero-gap CO2 electrolyser combining with CEM. Red and blue labels indicate Cu and Ag, respectively, as cathode catalysts [123]. Copyright 2019, Elsevier B.V. (b) Faradaic efficiency for CO and H2 using Ni-based molecular and Ag catalysts for zero-gap CO2 electrolyser with reverse-bias BPM configuration [26]. Copyright 2022, American Chemical Society. (c) Cross-section scanning electron microscope of the cathode with a permeable CO2 regeneration layer (PCRL) on Cu/PTFE [40]. Copyright 2021, American Chemical Society. (d) CO2 distribution in CEM-based MEA with anion-selective CO2 regeneration layer under 100 mA cm-2. The CO2 crossover indicates CO2 detected from the anode tail gas [40]. Copyright 2021, American Chemical Society. FEs of H2 and CO in reverse-bias BPMEA as a function of current density with anolyte at 0.2 mol L-1 KOH (e) and 3 mol L-1 KOH (f) [27]. Copyright 2021, American Chemical Society.
Fig. 9. Optimisation and performance of CO2 electrolyser with solid-state electrolyte (SSE). (a) Schematic illustration of CO2 electrolyser with SSE [135]. Copyright 2019, Springer Nature. (b) The CO2 recovery performance of solid electrolyte reactor. The CO2 recovered by water/gas flow through the SSE includes CO2 recovered as gas and CO2 recovered in water. Crossover CO2 and its theoretical value are obtained from GC measurement and calculated based on applied current, respectively [137]. Copyright 2022, Springer Nature. (c) Schematic illustration of promoted CO2RR by poly(aryl piperidinium) functionalised anion-conducting layer [139]. Copyright 2022, Elsevier B.V. (d) COMSOL simulation of the pH distribution in SSE electrolyser under 100 mA cm-2 with different content of dissolved CO2 (100% is the ambient CO2 solubility limit) [139]. Copyright 2022, Elsevier B.V.
|
[1] | 张成翼, 王兴宇, 王子运. 大语言模型在电催化领域中的应用[J]. 催化学报, 2024, 59(4): 7-14. |
[2] | 聂翼飞, 颜红萍, 鹿苏微, 张宏伟, 齐婷婷, 梁诗景, 江莉龙. 理论指导构建Cu-O-Ti-Ov活性位点及其高效电催化还原硝酸根研究[J]. 催化学报, 2024, 59(4): 293-302. |
[3] | 王超琛, 葛旺鑫, 唐雷, 齐宴宾, 董磊, 江宏亮, 沈建华, 朱以华, 李春忠. 单原子修饰原子簇的多配位Cu基催化剂上CO2高选择性电还原CO的研究[J]. 催化学报, 2024, 59(4): 324-333. |
[4] | 宋宁, 江吉周, 洪士欢, 王赟, 李春梅, 董红军. 以金属有机骨架为源制备单原子电催化剂用于能量转换的最新进展[J]. 催化学报, 2024, 59(4): 38-81. |
[5] | 蒋远, 杨级, 李沐霖, 王雪佳, 杨娜, 陈伟平, 董金超, 李剑锋. 揭示明确定义的金属-N4位点在电催化硝酸盐还原中的活性趋势[J]. 催化学报, 2024, 59(4): 195-203. |
[6] | 廖伟, 周乾, 龙瑾, 吴臣中, 王彬, 彭琼, 曹建新, 王青梅. 碳载体空位工程助力原位合成的Pt纳米枝晶促进电催化氧气还原[J]. 催化学报, 2024, 59(4): 260-271. |
[7] | 陈丽丽, 郝彦衡, 褚健意, 刘松, 白凤华, 罗文豪. 电催化硝酸根还原合成氨: 关于铁/铜基催化剂的研究展望[J]. 催化学报, 2024, 58(3): 25-36. |
[8] | 罗健颖, 傅捷, 叶丰铭, 梁汉锋, 王伟俊. 释放多孔纳米结构的活力: 可持续电催化水分解[J]. 催化学报, 2024, 58(3): 37-85. |
[9] | 屠振涛, 何晓洋, 刘璇, 熊登科, 左娟, 吴德礼, 汪建营, 陈作锋. 通过钨对镍活性位点的电子改性实现苯甲胺选择性氧化耦合制氢[J]. 催化学报, 2024, 58(3): 146-156. |
[10] | 郭一博, 薛圆媛, 周震. 铠甲催化剂助力锌-空气电池: 氮掺杂石墨烯上超薄碳封装铁镍合金增强氧电催化[J]. 催化学报, 2024, 58(3): 206-215. |
[11] | 李奇, 李杰浩, 白惠敏, 李发堂. 催化剂晶面工程在光/电催化中的研究进展[J]. 催化学报, 2024, 58(3): 86-104. |
[12] | 刘佳, 王式彬, 蔡锦福, 武立振, 刘云, 贺佳辉, 许在祥, 彭小革, 钟兴, 安亮, 王建国. 高活性方形氧化铅与可视化电解槽协同促进电催化臭氧生产[J]. 催化学报, 2024, 57(2): 80-95. |
[13] | 别泉泉, 尹海波, 王云龙, 苏海伟, 彭悦, 李俊华. Cu单原子与氧空位协同作用增强电催化CO2还原中C2液相产物活性[J]. 催化学报, 2024, 57(2): 96-104. |
[14] | 王志超, 王梦凡, 宦云飞, 钱涛, 熊杰, 杨成韬, 晏成林. 电催化二氧化碳与含氮小分子共还原的缺陷与界面工程[J]. 催化学报, 2024, 57(2): 1-17. |
[15] | 蔡豪, 陈芳, 胡程, 葛伟怡, 李彤, 张晓磊, 黄洪伟. 富含氧空位的Bi4O5Br2超薄纳米片用于高效压电催化生成过氧化氢[J]. 催化学报, 2024, 57(2): 123-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||