催化学报 ›› 2024, Vol. 59: 97-117.DOI: 10.1016/S1872-2067(23)64626-1

• 综述 • 上一篇    下一篇

均相和非均相催化微藻脂质提取和酯交换制备生物燃料的研究进展

Vinoth Kumar Ponnumsamya,b, Hussein E. Al-Hazmic, Sutha Shobanad, Jeyaprakash Dharmarajae, Dipak Ashok Jadhavf, Rajesh Banu Jg, Grzegorz Piechotah, Bartłomiej Iglińskii, Vinod Kumarj, Amit Bhatnagark, Kyu-Jung Chaef,l, Gopalakrishnan Kumarm,n,*()   

  1. a高雄医科大学药物与应用化学系, 环境医学研究中心, 台湾高雄, 中国
    b高雄医科大学医学研究部, 台湾高雄, 中国
    c格但斯克理工大学土木与环境工程学院, 纳鲁特维察格但斯克, 波兰
    d范朗大学工程与技术学院, 建筑绿色技术与可持续发展研究组, 胡志明市, 越南
    e工程技术学院, 科学与人文系, 化学部, 泰米尔纳德邦, 印度
    f韩国海洋大学海洋科学与工程学院环境工程系, 釜山, 韩国
    g泰米尔纳德邦中央大学生命科学系, 泰米尔纳德邦, 印度
    hGPCHEM沼气研究与分析实验室, 波兰
    i尼古拉斯哥白尼大学化学系, 波兰
    j克兰菲尔德大学水与能源学院, 英国
    k拉彭兰塔工业大学工程科学学院分离科学系, 芬兰
    l韩国海洋大学海洋可再生能源工程专业, 釜山, 韩国
    m延世大学土木与环境工程学院, 首尔, 韩国
    n斯塔万格大学科学技术学院化学、生物科学与环境工程研究所, 斯塔万格, 挪威
  • 收稿日期:2024-01-05 接受日期:2024-01-22 出版日期:2024-04-18 发布日期:2024-04-15
  • 通讯作者: *电子信箱: gopalakrishnanchml@gmail.com, gopalakrishnanchml@yonsei.ac.kr (G. Kumar).

A review on homogeneous and heterogeneous catalytic microalgal lipid extraction and transesterification for biofuel production

Vinoth Kumar Ponnumsamya,b, Hussein E. Al-Hazmic, Sutha Shobanad, Jeyaprakash Dharmarajae, Dipak Ashok Jadhavf, Rajesh Banu Jg, Grzegorz Piechotah, Bartłomiej Iglińskii, Vinod Kumarj, Amit Bhatnagark, Kyu-Jung Chaef,l, Gopalakrishnan Kumarm,n,*()   

  1. aDepartment of Medicinal and Applied Chemistry, & Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City-807, Taiwan, China
    bDepartment of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City-807, Taiwan, China
    cDepartment of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, Gdańsk, 80-233, Poland
    dGreen Technology and Sustainable Development in Construction Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
    eDivision of Chemistry, Faculty of Science and Humanities, AAA College of Engineering and Technology, Amathur-626005, Virudhunagar District, Tamil Nadu, India
    fDepartment of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
    gDepartment of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
    hGP CHEM. Laboratory of Biogas Research and Analysis, ul. Legionów 40a/3, 87-100 Toruń, Poland
    iNicolaus Copernicus University in Toruń, Faculty of Chemistry, Gagarina 7, 87-100 Toruń, Poland
    jSchool of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
    kDepartment of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
    lInterdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
    mSchool of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
    nInstitute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
  • Received:2024-01-05 Accepted:2024-01-22 Online:2024-04-18 Published:2024-04-15
  • Contact: *E-mail: gopalakrishnanchml@gmail.com, gopalakrishnanchml@yonsei.ac.kr (G. Kumar).
  • About author:Dr. Gopalakrishnan Kumar serves as Associate Professor in Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway. Additionally, he plays the role as “specially appointed Associate professor” concentrating on research in School of Civil and Environmental Engineering, Yonsei University, Republic of Korea. He has received his Ph.D. from Feng Chia University, China. He was the recipient of prestigious JSPS post-doctoral fellowships (JSPS, Japan) and Emilio Rosenblueth Fellowship (Mexico) for his post-doctoral studies. He is also visiting faculty in many universities around Europe (Hungary, Czech, Poland), India, Vietnam, China and Turkey. He has extensively published more than 375 SCI papers in highly prestigious Journals (including 4 cover image articles, 13 high cited/hot articles and 1 key scientific article), with total citations of > 26000 & h-index of 86. His major research interests include biofuel/biochemical production from lignocellulose/food-waste/wastewater and algal biomass via biorefinery and valorization schemes and Microbial fuel/electrolysis cell (MFC& MEC) technologies. Additionally, he is working on the application of green synthesized activated carbon and Nano particles for various environmental remediation applications.

摘要:

随着化石燃料燃烧导致的二氧化碳排放不断加剧气候变化, 且化石燃料储量日益减少, 寻求可再生能源已成为一项紧迫的任务. 其中, 藻类衍生可持续燃料因具有成本优势和可运输性, 在解决全球能源危机方面展现出广阔前景, 备受关注. 利用化学转化技术从微藻中提取脂质, 并通过酯交换反应可以将其转化为脂肪酸甲酯, 是生产绿色生物燃料的有效途径. 这一过程涉及游离脂肪酸、磷脂和甘油三酯的提取, 并且生产过程能耗低, 成为满足日益增长的能源需求的一种理想解决方案.

本文综述了微藻脂质提取和酯交换制备生物燃料的相关研究进展. 首先, 介绍了微藻脂质的提取方法, 包括溶剂提取法、索氏提取法、布利格和戴耶法、超临界二氧化碳提取以及离子液体溶剂法等, 并分析了各方法的优缺点. 随后, 重点阐述了酯交换技术在微藻脂质转化中的应用, 包括酸碱催化、酶催化以及原位酯交换反应等, 并探讨了这些技术的反应机理、催化剂选择、反应器设计以及生物油生产工艺等方面的研究进展. 通过综述上述研究进展, 为微藻脂质的生产和应用提供了理论指导. 研究表明, 通过优化催化剂种类、反应条件以及提取方法, 可以有效提高微藻脂质的转化效率和生物油品质. 同时, 本文也指出了当前微藻脂质生产中面临的挑战, 如微藻栽培和生长条件优化、高效转化技术的开发等. 随着可持续能源日益受到重视, 微藻脂质作为一种可再生能源具有巨大的发展潜力. 未来研究应进一步关注微藻的规模化栽培、生长条件优化以及高效转化技术的研发, 以提高微藻脂质的产量和品质. 同时, 应进一步推动和实现微藻生物燃料的实际应用, 从而为应对气候变化和能源危机提供有效的解决方案.

关键词: 微藻, 脂质提取, 酯交换, 催化, 酶催化, 原位技术

Abstract:

Extracting lipids from microalgal biomass presents significant potential as a cost-effective approach for clean energy generation. This can be achieved through the chemical conversion of lipids to produce fatty acid methyl esters via transesterification. The extraction mainly involves free fatty acids, phospholipids, and triglycerides, and requires less energy, making it an attractive option for satisfying the growing demand for fossil-derived energies. Several approaches have been explored for sustainable bioenergy production from microalgal species via catalytic, non-catalytic, and enzymatic transesterification. This review discusses recent insights into microalgal lipid extraction via solvent, Soxhlet, Bligh and Dyer’s, supercritical CO2, and ionic liquids solvent methods and lipid conversion by transesterification and homo/heterogeneous acid/base catalyzed, enzymatic, non-catalytic, and mechanically/chemically catalyzed in-situ techniques towards algal bioenergy production. Technical advances in both extraction and conversion are necessary for the commercialization of renewable energy sources.

Key words: Microalgae, Lipid extraction, Transesterification, Catalytic, Enzymatic, In-situ techniques