催化学报 ›› 2024, Vol. 59: 346-359.DOI: 10.1016/S1872-2067(23)64629-7

• 论文 • 上一篇    

g-C3N4/PCN-224“壳-核”结构异质结压电-光催化协同高效制备过氧化氢

孟令辉a, 赵晨a,*(), 楚弘宇a, 李渝航a, 付会芬a, 王鹏a, 王崇臣a,*(), 黄洪伟b,*()   

  1. a北京建筑大学环境与能源工程学院, 建筑结构与环境修复功能材料北京市重点实验室, 北京 100044
    b中国地质大学(北京)材料科学与技术学院矿物材料国家实验室, 资源地质碳储存与低碳利用教育部工程研究中心, 非金属矿产与固体废物材料利用北京市重点实验室, 北京 100083
  • 收稿日期:2024-01-09 接受日期:2024-02-22 出版日期:2024-04-18 发布日期:2024-04-15
  • 通讯作者: *电子信箱: zhaochen1@bucea.edu.cn (赵晨), wangchongchen@bucea.edu.cn (王崇臣), hhw@cugb.edu.cn (黄洪伟).
  • 基金资助:
    国家自然科学基金项目(52300026);国家自然科学基金项目(22176012);国家自然科学基金项目(52370025);北京市教育委员会科学研究计划项目资助(KM202310016007);北京建筑大学基本科研业务费(X20147);北京建筑大学基本科研业务费(X20141);北京建筑大学基本科研业务费(X20135);北京建筑大学基本科研业务费(X20146);北京市科学技术协会青年人才托举工程(BYESS2023100);北京市属高等学校高水平科研创新团队建设支持计划项目(BPHR20220108)

Synergetic piezo-photocatalysis of g-C3N4/PCN-224 core-shell heterojunctions for ultrahigh H2O2 generation

Linghui Menga, Chen Zhaoa,*(), Hongyu Chua, Yu-Hang Lia, Huifen Fua, Peng Wanga, Chong-Chen Wanga,*(), Hongwei Huangb,*()   

  1. aBeijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    bEngineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Material Sciences and Technology, China University of Geosciences (Beijing), Beijing 100083, China
  • Received:2024-01-09 Accepted:2024-02-22 Online:2024-04-18 Published:2024-04-15
  • Contact: *E-mail: zhaochen1@bucea.edu.cn (C. Zhao), wangchongchen@bucea.edu.cn (C.-C. Wang), hhw@cugb.edu.cn (H. Huang).
  • Supported by:
    National Natural Science Foundation of China(52300026);National Natural Science Foundation of China(22176012);National Natural Science Foundation of China(52370025);The R&D Program of Beijing Municipal Education Commission(KM202310016007);The Fundamental Research Funds for Beijing University of Civil Engineering and Architecture(X20147);The Fundamental Research Funds for Beijing University of Civil Engineering and Architecture(X20141);The Fundamental Research Funds for Beijing University of Civil Engineering and Architecture(X20135);The Fundamental Research Funds for Beijing University of Civil Engineering and Architecture(X20146);The Young Elite Scientists Sponsorship Program by BAST(BYESS2023100);The Project of Construction and Support for High-Level Innovative Teams of Beijing Municipal Institutions(BPHR20220108)

摘要:

相比于传统的蒽醌法, 光催化、压电催化或压电辅助光催化法制备过氧化氢(H2O2)对于推进清洁能源的开发和利用具有重要意义. 石墨相氮化碳(g-C3N4)具有可见光催化合成H2O2的活性, 其中材料内部生成的1,4-内过氧化物可有效提高双电子氧还原(2e--ORR)的选择性. 然而, g-C3N4的本征结构性质导致其在催化制备H2O2过程中受到很多因素的限制, 如存在光生载流子易复合、可见光响应范围窄、比表面积小导致传质效率低等问题. 在众多针对g-C3N4的改性策略中, 通过科学筛选并选择合适的功能材料与g-C3N4构建异质结构可有效解决上述问题. 其中, 卟啉基金属有机骨架材料PCN-224的带隙值(Eg = 1.65 eV)较小, 这使得其具有良好的光响应性能. 同时, 该材料拥有较大的比表面积(1310.5 m2 g-1)和丰富的孔道结构, 这显著提升了传质效率. 此外, PCN-224配体中的吡咯结构能够作为路易斯活性位点, 有效促进分子氧的吸附, 从而提升催化剂催化ORR制备H2O2的效率.

本文采用简便的机械球磨法制备了g-C3N4/PCN-224 (简称为CP-x, x代表异质结催化剂中PCN-224的质量百分含量)异质结材料. 为促使光生空穴与电子在异质界面实现定向迁移与高效分离, 进一步构建了压电-光催化协同反应体系. 粉末X射线衍射、傅里叶变换红外光谱、X射线光电子能谱等表征结果表明, PCN-224与g-C3N4之间形成了紧密的异质结构. 紫外-可见漫反射光谱结果表明, 相比于g-C3N4, CP-x异质结材料具有更宽的光谱响应范围和更大的比表面积(最高达到442.6 m2 g-1), 更有利于传质过程. 最佳材料CP-5催化制备H2O2的产率达到4.86 mmol g-1 h-1, 优于大多数现已报道的g-C3N4基和MOFs基功能材料. 通过压电力显微镜和开尔文压电力显微镜等表征技术进一步验证了CP-5异质材料具有压电特性. 自由基捕捉、活性物质定量、电子自旋共振波谱和电化学测试等结果表明, PCN-224与g-C3N4之间良好的能带匹配度有利于提升CP-x催化制备H2O2的活性与选择性. 本文还采用天然雨水作为质子来源, 并在相同条件下进行实验. 结果发现, H2O2产率仍能达到2.78 mmol g-1 h-1. 此外, 本研究制备的H2O2溶液对大肠杆菌表现出了良好的灭活效果. 对比空白实验组, 添加400 μL反应后H2O2溶液的实验组对大肠杆菌的灭活效率达到了100%. 结合理论计算确定了H2O2催化制备过程中H+和O2等关键底物在CP-x异质材料上的吸附位点与吸附能, 并分析了ORR过程中关键中间产物(O2*, H*, OOH*)的吉布斯自由能, 阐明了PCN-224与g-C3N4协同强化制备H2O2的反应机制.

综上, 本研究通过构建g-C3N4/PCN-224异质结材料, 实现了高效催化制备H2O2, 并阐明了其协同催化的反应机制. 本文结果将对MOFs基功能材料在压电-光催化制备H2O2领域的发展与应用提供参考.

关键词: 卟啉-金属有机骨架, 氮化碳, 过氧化氢, 压电-光催化, 机理机制

Abstract:

Hydrogen peroxide (H2O2) is a high-value-added chemical for multitudinous industrial applications. Being compared with traditional anthraquinone processes, it is an eco-friendly and promising strategy to accomplish catalytic reduction of molecular oxygen for H2O2 production with the aid of mechanical and solar energy. It was the first attempt to combine a porphyrin-based metal-organic framework (PCN-224) and piezoelectric semiconductor (g-C3N4) to fabricate heterostructures (abbreviated as CP-x) with core-shell structure for piezo-photocatalytic H2O2 production. The introduction of PCN-224 not only widened light absorption range and accelerated electron transfer, but also facilitated the hydrogenation and generation of OOH*, which was more prone to direct two-electron O2 reduction. Furthermore, benefitting from the synergism of the piezo-photocatalysis, an exceptional piezo-photocatalytic H2O2 evolution rate of 5.97 mmol g-1 h-1 with solar-to-chemical conversion (SCC) efficiency of 0.14% was achieved by the optimum CP-5 heterojunction. This achievement significantly surpassed the previously reported g-C3N4-based and MOF-based materials. The use of rainwater as proton sources also allowed an impressive H2O2 generation rate (2.78 mmol g-1 h-1), thereby this outcome was of great significance to the rainwater utilization. This work contributed an in-depth understanding of piezo-photocatalytic O2 reduction and provided an alternative way for the development of porphyrinic MOFs heterojunctions for synthesis of H2O2.

Key words: Porphyrin MOF, g-C3N4, H2O2, Piezo-photocatalysis, Mechanism