催化学报 ›› 2023, Vol. 55: 253-264.DOI: 10.1016/S1872-2067(23)64555-3

• 论文 • 上一篇    下一篇

镓离子掺杂和硫空位调控的In2S3增强可见光下光催化生成过氧化氢

李锋a,b, 唐小龙a,b, 胡卓锋c, 黎相明d, 李方a, 谢宇e, 江燕斌a,b,*(), 余长林a,*()   

  1. a广东石油化工学院化学工程学院, 广东茂名 525000
    b华南理工大学化学与化工学院, 广东广州 510000
    c中山大学环境科学与工程学院, 广东省环境污染控制与修复技术重点实验室, 广东广州 510006
    d广东石油化工学院材料科学与工程学院, 广东茂名 525000
    e南昌航空大学环境与化学工程学院, 江西南昌 330063
  • 收稿日期:2023-09-29 接受日期:2023-10-30 出版日期:2023-12-18 发布日期:2023-12-07
  • 通讯作者: *电子邮箱: cebjiang@scut.edu.cn (江燕斌), yuchanglinjx@163.com (余长林).
  • 基金资助:
    国家自然科学基金(22272034);国家自然科学基金(22102034);广东省基础与应用基础研究基金(202201011695);广东省基础与应用基础研究基金(2022A1515011900);广东省基础与应用基础研究基金(2023A1515012948);广东省高校珠江学者资助计划(2019);广东省高校环境与能源绿色催化创新团队(2022KCXTD019);江西省双千人才计划;茂名市绿色化工研究院扬帆应用创新项目(MMGCIRI-2022YFJH-Y-002);茂名市科技项目(2020KJZX035)

Boosting the hydrogen peroxide production over In2S3 crystals under visible light illumination by gallium ions doping and sulfur vacancies modulation

Feng Lia,b, Xiaolong Tanga,b, Zhuofeng Huc, Xiangming Lid, Fang Lia, Yu Xiee, Yanbin Jianga,b,*(), Changlin Yua,*()   

  1. aSchool of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
    bSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510000, Guangdong, China
    cSchool of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
    dSchool of Materials Sciences and Technology, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
    eCollege of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China
  • Received:2023-09-29 Accepted:2023-10-30 Online:2023-12-18 Published:2023-12-07
  • Contact: *E-mail: cebjiang@scut.edu.cn (Y. Jiang), yuchanglinjx@163.com (C. Yu).
  • Supported by:
    National Natural Science Foundation of China(22272034);National Natural Science Foundation of China(22102034);Guangdong Basic and Applied Basic Research Foundation(202201011695);Guangdong Basic and Applied Basic Research Foundation(2022A1515011900);Guangdong Basic and Applied Basic Research Foundation(2023A1515012948);Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2019);Environment and Energy Green Catalysis Innovation Team of Colleges and Universities of Guangdong Province(2022KCXTD019);Jiangxi Province “Double Thousand Plan”;Yangfan Applied Innovation Project of Maoming Green Chemical Industry Research Institute(MMGCIRI-2022YFJH-Y-002);Science and Technology Project of Maoming(2020KJZX035)

摘要:

过氧化氢(H2O2)是一种绿色氧化剂, 广泛用于日常生活和工业中. 传统的蒽醌法制备H2O2的工艺流程繁琐, 并且大量使用有机溶剂, 对环境很不友好; 小规模H2O2生产一般采用H2和O2直接合成, 但是也存在高温、高压下使用氢气的安全隐患. 人工光催化合成H2O2原料(水和氧气)易得且太阳能清洁可再生, 是一个非常有前景的策略. 然而, 在光催化过程中, 电子-空穴对(e-h+)的高复合率大大抑制了氧还原反应(ORR)生成H2O2的效率.

本文提出了在合成In2S3的金属有机框架(MOF)前驱体中加入Ga3+离子(IGS5), 并将IGS5在管式炉中在Ar保护下焙烧, 调控S空位, 制得具有高活性的Ga3+离子掺杂和S空位调控的In2S3光催化剂. 通过X射线粉末衍射和X射线光电子能谱证明了成功掺杂Ga3+离子. 扫描电镜、透射电镜和氮气等温吸附脱附曲线结果表明, Sv-IGS-90 (焙烧90 min)为介孔材料. 紫外-可见漫反射光谱结果表明, 所有催化剂均可吸收部分可见光, 结合莫特肖特基曲线结果, 说明催化剂的导带、价带位置均满足光催化生成H2O2的最低要求. 采用光致发光光谱、时间分辨光致发光光谱、光电流强度曲线和电化学阻抗曲线研究了催化剂的载流子分离和重组行为. 电子顺磁共振谱结果表明, Sv-IGS-90中存在S空位, 结合O2程序升温解吸结果, 可以推断S空位可以促进O2的吸附. 计算了ORR每一步所需的热力学自由能, 结果表明, Ga3+离子和S空位协同作用可以提高2e ORR的选择性并促进O2的吸附与活化. 制备的Sv-IGS5-90在异丙醇:水为1:9体系中(10 vol%)连续照射(λ ≥ 420 nm)1 h后, H2O2浓度达到352.58 μmol L‒1, 是纯In2S3的7.5倍, 450 nm处的表观量子产率为4.64%. 对Sv-IGS5-90光催化产H2O2的机理进行了深入研究, DMPO •O2, DMPO •OH和TEMP 1O2信号峰表明, •O2, •OH, 1O2, e和h+均参与到整个反应, 说明O2生成H2O2的途径为单电子ORR, •O2首先被氧化成1O2, 然后生成H2O2.

综上, 利用S空位调控和Ga3+离子掺杂的策略可有效提高In2S3催化剂光催化产H2O2性能, 为设计高性能的光催化生产H2O2的材料提供一定参考.

关键词: 光催化, 硫化铟, 过氧化氢, 硫空位, 镓离子

Abstract:

Hydrogen peroxide (H2O2) is a green oxidant that is widely used in daily life and industry. Artificial photocatalytic synthesis of H2O2 is a green and sustainable scheme, but the high complexation rate of electron-hole pairs during photocatalysis and the low activation capacity of the catalyst for O2 greatly inhibit the oxygen reduction reaction. Herein, the first synergistic modification of In2S3 using ion doping and vacancy modulation is used in this paper. An In2S3-based photocatalyst containing S vacancies and Ga3+ ions is designed and synthesized. After continuous irradiation under visible light (λ ≥ 420 nm) for 1 h, the H2O2 concentration of the system reaches 352.58 μmol L-1, which is 7.5 times than that of pure In2S3, and the apparent quantum yield at 450 nm is 4.64%. Appropriate concentrations of S vacancies promoted O2 adsorption, and theoretical calculations demonstrates that Ga3+ ions and S vacancies synergistically promote O2 activation and more favorable for 2e- oxygen reduction reaction. All these phenomena facilitate H2O2 generation. Furthermore, ESR analysis and radical trapping experiments show that the interaction between superoxide anion radicals (•O2-), singlet oxygen (1O2), h+, and proton donor (isopropanol) in the solution phase plays a key role in the photocatalytic synthesis of H2O2, which has been largely neglected in previous studies. We suggest that the S vacancy-regulated Ga3+ ion-doped In2S3 catalyst could provide a reference for the design of high-performance materials for the photocatalytic production of hydrogen peroxide.

Key words: Photocatalysis, Indium sulfide, Hydrogen peroxide, Sulfur vacancy, Gallium ion