催化学报 ›› 2024, Vol. 57: 1-17.DOI: 10.1016/S1872-2067(23)64588-7
• 综述 • 下一篇
王志超a, 王梦凡b,*(), 宦云飞c, 钱涛c, 熊杰a, 杨成韬a,*(
), 晏成林b,d,*(
)
收稿日期:
2023-10-26
接受日期:
2023-12-21
出版日期:
2024-02-18
发布日期:
2024-02-10
通讯作者:
* 电子信箱: mfwang1204@suda.edu.cn (王梦凡),ctyang@uestc.edu.cn (杨成韬),c.yan@suda.edu.cn (晏成林).
基金资助:
Zhichao Wanga, Mengfan Wangb,*(), Yunfei Huanc, Tao Qianc, Jie Xionga, Chengtao Yanga,*(
), Chenglin Yanb,d,*(
)
Received:
2023-10-26
Accepted:
2023-12-21
Online:
2024-02-18
Published:
2024-02-10
Contact:
* E-mail: About author:
Mengfan Wang is a postdoc fellow in the College of Energy at Soochow University in Suzhou, China. He received his PhD degree from Soochow University in 2021. His current research focuses on rational design of electrocatalytic systems toward gas‐involved electrochemical reactions.Supported by:
摘要:
化石燃料的大量燃烧和利用造成日益严重的能源危机、全球气候变暖和环境污染, 已成为人类面临的严峻挑战. 因此, 迫切需要开发可持续的能源存储和转换技术. 其中, 将二氧化碳(CO2)、氮气(N2)、硝酸盐(NO3-)和亚硝酸盐(NO2-)等广泛分布的小分子和环境污染物转化为高附加值的化学品和燃料受到了广泛关注. 然而, 工业合成方法通常需要高温高压等极为苛刻的条件并消耗大量的能量(如Haber-Bosch和Bosch-Meiser方法分别用于合成氨(NH3)和尿素), 这加剧了能源危机和环境污染. 因此, 在常温常压下, 由可再生的电能驱动的电化学催化小分子转化为高附加值化学品被认为是最有前途的能量储存和转化技术之一, 它为缓解日益严重的环境问题和能源危机提供了契机.
本文系统地总结了近年来在常温常压下电催化CO2与含氮小分子(N2, NH3, NO2-和NO3-)共还原合成高附加值的含氮肥料(如尿素)和化学品(如酰胺和胺等)的研究进展, 尤其是缺陷化学和界面工程与催化活性/选择性之间的构效关系. 首先, 根据空间尺寸和来源介绍了缺陷的分类, 阐述了界面和缺陷之间的内在联系, 总结了掺杂、刻蚀、热处理等缺陷构建方法, 以及电镜法和谱学法等缺陷表征手段. 其次, 系统地介绍了通过构建空位(尤其是氧空位)、异原子掺杂、设计单原子催化剂及双原子催化剂等缺陷设计策略来提升电催化碳-氮(C-N)偶联反应合成含氮有机物性能的最新研究进展, 阐明了不同缺陷结构对催化剂电子结构和反应物/中间体吸附特征的调控作用. 此外, 归纳了构建金属/金属界面、金属/碳界面和金属间化合物(合金)等界面工程策略对电催化性能的调控. 通过总结经典案例, 重点强调了影响目标产物催化性能和选择性的关键因素和描述符. 最后, 针对目前电催化C-N偶联反应中存在的反应过程复杂、催化机理不明确、副反应严重、目标产物催化活性和选择性较低等挑战, 对未来发展趋势提出了展望: (1) 采用机器学习、分子模拟计算、密度泛函理论计算等预测并筛选高效的缺陷和界面工程的电催化剂, 并对可能的活性位点和反应路径进行预测; (2) 优化催化剂制备过程, 实现催化剂中不同缺陷和界面的可控合成; (3) 发展先进的原位表征技术监测电催化剂表面上的动态变化和识别反应过程中产生的中间体, 结合理论计算对电催化C-N耦合反应的催化机理和反应路径进行深入地理解.
综上所述, 本文系统地总结了通过缺陷和界面工程调控催化剂结构并提高电催化C-N偶联反应合成含氮有机物的策略, 并对该领域目前存在的挑战和未来的发展前景进行了展望, 为促进电化学C-N偶联反应的工业化应用提供借鉴.
王志超, 王梦凡, 宦云飞, 钱涛, 熊杰, 杨成韬, 晏成林. 电催化二氧化碳与含氮小分子共还原的缺陷与界面工程[J]. 催化学报, 2024, 57: 1-17.
Zhichao Wang, Mengfan Wang, Yunfei Huan, Tao Qian, Jie Xiong, Chengtao Yang, Chenglin Yan. Defect and interface engineering for promoting electrocatalytic N-integrated CO2 co-reduction[J]. Chinese Journal of Catalysis, 2024, 57: 1-17.
Fig. 3. SFG signals of intermediate species on pristine CeO2 (a) and VO-CeO2-750 (b). (c) Urea yield rates of CeO2 and oxygen vacancy-mediated CeO2 catalysts at different potentials. Reprinted with permission from Ref. [86]. Copyright 2022, American Chemical Society. (d) The urea synthesis performance of InOOH and VO-InOOH at -0.5 V vs. RHE. (e) Free-energy diagrams for urea synthesis on the (010) facets of InOOH and VO-InOOH. Reprinted with permission from Ref. [87]. Copyright 2022, American Chemical Society. (f) In-situ ART-FTIR spectra of ZnO-V under various electrochemical conditions. (g) Schematic illustration of urea formation over ZnO-V. (h) The urea synthesis Faradaic efficiency at different potentials over ZnO-V. Reprinted with permission from Ref. [88]. Copyright 2021, Elsevier. (i) Two Cu (111) surfaces with a spacing of ds were used to simulate copper with an atomic gap. (j) The calculated kinetic barriers for various C-N coupling reactions. Reprinted with permission from Ref. [89]. Copyright 2023, Royal Society of Chemistry.
Fig. 4. XANES (a) and EXAFS (b) spectra of Cu1-CeO2 at different potentials during C-N coupling process at Cu K-edge. (c) Schematic diagram of reconstitution of Cu single-atoms to nanoclusters. Reprinted with permission from Ref. [96]. Copyright 2023, John Wiley and Sons. CO2-TPD (d) and N2-TPD (e) spectra of Pd1-TiO2 and Pd1Cu1-TiO2. Reprinted with permission from Ref. [97]. Copyright 2023, John Wiley and Sons. (f) The structural model of F-doped CNT. Brown, red, pink, blue, and green spheres present C, O, H, F, and N atoms, respectively. (g) Free energy diagrams of C-N coupling reaction for CNT and F-CNT. Reprinted with permission from Ref. [99]. Copyright 2022, Elsevier.
Fig. 5. XANES (a) and spectra at Cu K-edge (b) for Cu-GS-800, Cu-GS-900, and Cu-GS-1000. (c) Faradaic efficiencies of as-prepared products for Cu-GS-800 under different potentials. Reprinted with permission from Ref. [108]. Copyright 2022, John Wiley and Sons. (d) Proposed “Four-Step” strategy for screening promising catalysts for urea synthesis. (e) Free energies of N2* intermediate via end/side-on pattern. (f) Volcano plot of adsorption energy of *NCON intermediate as a function of limiting potential of urea synthesis on different M/p-BN catalysts. Reprinted with permission from Ref. [109]. Copyright 2023, Elsevier.
Fig. 6. (a) High angle annular dark field scanning transmission electron microscopy image of B-FeNi-DASC. (b) Atomic-resolution electron energy-loss spectroscopy mapping of the Fe-Ni configuration. (c) Free energy diagram of urea production over B-FeNi-DASC electrocatalyst. Reprinted with permission from Ref. [112]. Copyright 2023, Springer Nature. (d) Urea yield rates and Faradaic efficiencies of ZnMn-N and ZnMn-N,Cl with CO pre-poisoning. (e) CO-TPD spectra of ZnMn-N and ZnMn-N,Cl. (f) Free energies of side/end-on adsorption of N2 over Zn-Mn catalysts. Reprinted with permission from Ref. [113]. Copyright 2023, John Wiley and Sons. Flowchart of screening procedures (g) and schematic depiction (h) of potential reaction pathways for urea generation. Reprinted with permission from Ref. [115]. Copyright 2023, John Wiley and Sons.
Fig. 7. DEMS spectra of CO (a) and NH2 (b) signals over Cu@Zn under different electrochemical conditions. Reprinted with permission from Ref. [123]. Copyright 2022, American Chemical Society. (c) The average charge density difference for Bi-BiVO4 heterojunction, yellow and cyan regions present electron accumulation and depletion, respectively. Free energy diagrams for N2 (d) and CO2 (e) adsorption on BiVO4 and Bi-BiVO4 and the corresponding structure models. Reprinted with permission from Ref. [124]. Copyright 2021, John Wiley and Sons. (f) Schematic electrocatalytic urea production mechanism on BiFeO3/BiVO4 heterojunction. Reprinted with permission from Ref. [125]. Copyright 2023, Royal Society of Chemistry.
Fig. 8. XANES (a) and EXAFS (b) spectra of Mo foil, MoO3, and MoOx/C at Mo K-edge. Reprinted with permission from Ref. [22]. Copyright 2023, John Wiley and Sons. High-resolution XPS spectra of (c) Ni 2p and (d) Co 2p for Co-NiOx and Co-NiOx@GDY. Reprinted with permission from Ref. [17]. Copyright 2022, Oxford University Press. TEM (e) and high-resolution TEM (HRTEM) (f) images of Bi2S3/N-RGO. (g) Linear sweep voltammetry curves of Bi2S3/N-RGO. (h) Urea yield rate and Faradaic efficiency of Bi2S3/N-RGO at different potentials. Reprinted with permission from Ref. [129]. Copyright 2023, American Chemical Society.
Fig. 9. (a) Schematic illustration of electrocatalytic CO2 and nitrite reduction for C-N coupling of urea production on AuCu SANFs. (b,c) TEM, selected area electron diffraction (SAED) and HRTEM images of AuCu SANFs. Reprinted with permission from Ref. [135]. Copyright 2022, Elsevier. (d) Schematic illustration of the electron transfer from Cu to Rh atoms on the RhCu-uls. Reprinted with permission from Ref. [136]. Copyright 2023, Royal Society of Chemistry. (e) Products distribution at different potentials in CO-saturated 1.0 mol L-1 KOH + 1.0 mol L-1 KNO2 electrolyte on Ru1Cu SAA. (f) Free energy diagrams for NO2? reduction with the assistance of *CO and (g) synthesis of formamide on Ru1Cu SAA surface. Reprinted with permission from Ref. [137]. Copyright 2023, Springer Nature. (h) Urea yield rates of Cu-C, Cu97In3-C, Cu30In70-C and In-C at different potentials. (i) Urea yield rates and corresponding carbon monoxide/formate ratios on bimetallic systems. Reprinted with permission from Ref. [138]. Copyright 2023, John Wiley and Sons.
Catalyst | Active site | Carbon source | Nitrogen source | Operating condition | Major product | Yield rate | Efficiency | Ref. |
---|---|---|---|---|---|---|---|---|
VO-CeO2-750 | O vacancy | CO2 | NO3− | -1.6 V vs. RHE | urea | 943.6 mg h-1 g-1 | N.A. | [ |
VO-InOOH | O vacancy | CO2 | NO3− | -0.5 V vs. RHE | urea | 592.5 μg h-1 mg-1 | 51.0% | [ |
ZnO-V | O vacancy | CO2 | NO2− | -0.79 V vs. RHE | urea | 16.56 mmol h-1 | 23.26% | [ |
VN-Cu3N-300 | N vacancy | CO2 | N2 | -0.4 V vs. RHE | urea | 81 μg h-1 cm-2 | 28.7% | [ |
6 Å-Cu | atomic-defects | CO2 | NO3− | -0.4 V vs. RHE | urea | 7541.9 μg h-1 mg-1 | 51.97 ± 0.8% | [ |
Cu-TiO2 | Cu doping | CO2 | NO2− | -0.4 V vs. RHE | urea | 20.8 μmol h-1 | 43.1% | [ |
Cu-CeO2 | Cu doping | CO2 | NO3− | -1.6 V vs. RHE | urea | 52.84 mmol h-1 g-1 | N.A. | [ |
Pd1Cu1-TiO2 | dual-atom/O vacancy | CO2 | N2 | -0.5 V vs. RHE | urea | 166.67 molurea molPd-1 h-1 | 22.54% | [ |
Te-Pd NCs | Te doping | CO2 | NO2− | -1.1 V vs. RHE | urea | N.A. | 12.2% | [ |
F-CNT | F doping | CO2 | NO3− | -0.65 V vs. RHE | urea | 6.36 mmol h-1 g-1 | 18.0% | [ |
BDD | B doping | CH3OH | NH3 | 120 mA cm-2 | formamide | 36.9 g h-1 | 41.2% | [ |
Cu SACs | signal atom | CO2 | NO3− | -0.9 V vs. RHE | urea | 4.3 nmol s-1 cm-2 | 28% | [ |
B-FeNi-DASC | dual atom | CO2 | NO3− | -1.5 V vs. RHE | urea | 20.2 mmol h-1 g-1 | 17.8% | [ |
ZnMn-N,Cl | dual atom | CO | NO3− | -0.3 V vs. RHE | urea | 4.0 mmol g-1 h-1 | 63.5% | [ |
Cu@Zn | Cu/Zn interface | CO2 | NO3− | -1.02 V vs. RHE | urea | 7.29 μmol cm-2 h-1 | 9.28% | [ |
Bi-BiVO4 | heterojunction | CO2 | N2 | -0.4 V vs. RHE | urea | 5.91 mmol h-1 g-1 | 12.55% | [ |
BiFeO3/BiVO4 | heterojunction | CO2 | N2 | -0.4 V vs. RHE | urea | 4.94 mmol h-1 g-1 | 17.18% | [ |
CoPc-MoS2 | dual sites | CO2 | N2 | -0.7 V vs. RHE | urea | 175.6 μg h-1 mg-1 | 15.12% | [ |
MoOx/C | Mo-C interfaces | CO2 | NO3− | -0.6 V vs. RHE | urea | 1431.5 μg h-1 mg-1 | 27.7% | [ |
Co-NiOx@GDY | heterojunction | CO2 | NO2− | -0.7 V vs. RHE | urea | 913.2 μg h-1 mg-1 | 64.3% | [ |
Bi2O3/N-RGO | heterojunction | CO2 | N2 | -0.5 V vs. RHE | urea | 4.4 mmol g-1 h-1 | 7.5% | [ |
Fe(a)@C-Fe3O4/CNTs | dual sites | CO2 | NO3− | -0.65 V vs. RHE | urea | 1341.3 ± 112.6 μg h-1 mg-1 | 16.5 ± 6.1% | [ |
Pd1Cu1-TiO2 | alloying | CO2 | N2 | -0.4 V vs. RHE | urea | 3.36 mmol g-1 h-1 | 8.92% | [ |
AuCu SANFs | alloying | CO2 | NO2− | -1.55 V vs. Ag/AgCl | urea | 3889.6 μg h-1 mg-1 | 24.7% | [ |
RhCu | alloying | CO2 | NO3− | -0.6 V vs. RHE | urea | 26.81 ± 0.62 mmol g-1 h-1 | 34.82 ± 2.47% | [ |
Ru1Cu SAA | alloying | CO | NO2− | -0.5 V vs. RHE | formamide | 2483.77 ± 155.34 μg h-1 mg-1 | 45.65 ± 0.76% | [ |
Cu97In3-C | alloying | CO2 | NO3− | -1.4 V vs. RHE | urea | 13.1 mmol g-1 h-1 | N.A. | [ |
Cu-Hg alloys | alloying | oxalic acid | NO3− | -1.4 V vs. Ag/AgCl | glycine | N.A. | 43.1% | [ |
Table 1 Summary of defect and interface engineering catalysts for electrocatalytic N-integrated CO2 co-reduction reaction.
Catalyst | Active site | Carbon source | Nitrogen source | Operating condition | Major product | Yield rate | Efficiency | Ref. |
---|---|---|---|---|---|---|---|---|
VO-CeO2-750 | O vacancy | CO2 | NO3− | -1.6 V vs. RHE | urea | 943.6 mg h-1 g-1 | N.A. | [ |
VO-InOOH | O vacancy | CO2 | NO3− | -0.5 V vs. RHE | urea | 592.5 μg h-1 mg-1 | 51.0% | [ |
ZnO-V | O vacancy | CO2 | NO2− | -0.79 V vs. RHE | urea | 16.56 mmol h-1 | 23.26% | [ |
VN-Cu3N-300 | N vacancy | CO2 | N2 | -0.4 V vs. RHE | urea | 81 μg h-1 cm-2 | 28.7% | [ |
6 Å-Cu | atomic-defects | CO2 | NO3− | -0.4 V vs. RHE | urea | 7541.9 μg h-1 mg-1 | 51.97 ± 0.8% | [ |
Cu-TiO2 | Cu doping | CO2 | NO2− | -0.4 V vs. RHE | urea | 20.8 μmol h-1 | 43.1% | [ |
Cu-CeO2 | Cu doping | CO2 | NO3− | -1.6 V vs. RHE | urea | 52.84 mmol h-1 g-1 | N.A. | [ |
Pd1Cu1-TiO2 | dual-atom/O vacancy | CO2 | N2 | -0.5 V vs. RHE | urea | 166.67 molurea molPd-1 h-1 | 22.54% | [ |
Te-Pd NCs | Te doping | CO2 | NO2− | -1.1 V vs. RHE | urea | N.A. | 12.2% | [ |
F-CNT | F doping | CO2 | NO3− | -0.65 V vs. RHE | urea | 6.36 mmol h-1 g-1 | 18.0% | [ |
BDD | B doping | CH3OH | NH3 | 120 mA cm-2 | formamide | 36.9 g h-1 | 41.2% | [ |
Cu SACs | signal atom | CO2 | NO3− | -0.9 V vs. RHE | urea | 4.3 nmol s-1 cm-2 | 28% | [ |
B-FeNi-DASC | dual atom | CO2 | NO3− | -1.5 V vs. RHE | urea | 20.2 mmol h-1 g-1 | 17.8% | [ |
ZnMn-N,Cl | dual atom | CO | NO3− | -0.3 V vs. RHE | urea | 4.0 mmol g-1 h-1 | 63.5% | [ |
Cu@Zn | Cu/Zn interface | CO2 | NO3− | -1.02 V vs. RHE | urea | 7.29 μmol cm-2 h-1 | 9.28% | [ |
Bi-BiVO4 | heterojunction | CO2 | N2 | -0.4 V vs. RHE | urea | 5.91 mmol h-1 g-1 | 12.55% | [ |
BiFeO3/BiVO4 | heterojunction | CO2 | N2 | -0.4 V vs. RHE | urea | 4.94 mmol h-1 g-1 | 17.18% | [ |
CoPc-MoS2 | dual sites | CO2 | N2 | -0.7 V vs. RHE | urea | 175.6 μg h-1 mg-1 | 15.12% | [ |
MoOx/C | Mo-C interfaces | CO2 | NO3− | -0.6 V vs. RHE | urea | 1431.5 μg h-1 mg-1 | 27.7% | [ |
Co-NiOx@GDY | heterojunction | CO2 | NO2− | -0.7 V vs. RHE | urea | 913.2 μg h-1 mg-1 | 64.3% | [ |
Bi2O3/N-RGO | heterojunction | CO2 | N2 | -0.5 V vs. RHE | urea | 4.4 mmol g-1 h-1 | 7.5% | [ |
Fe(a)@C-Fe3O4/CNTs | dual sites | CO2 | NO3− | -0.65 V vs. RHE | urea | 1341.3 ± 112.6 μg h-1 mg-1 | 16.5 ± 6.1% | [ |
Pd1Cu1-TiO2 | alloying | CO2 | N2 | -0.4 V vs. RHE | urea | 3.36 mmol g-1 h-1 | 8.92% | [ |
AuCu SANFs | alloying | CO2 | NO2− | -1.55 V vs. Ag/AgCl | urea | 3889.6 μg h-1 mg-1 | 24.7% | [ |
RhCu | alloying | CO2 | NO3− | -0.6 V vs. RHE | urea | 26.81 ± 0.62 mmol g-1 h-1 | 34.82 ± 2.47% | [ |
Ru1Cu SAA | alloying | CO | NO2− | -0.5 V vs. RHE | formamide | 2483.77 ± 155.34 μg h-1 mg-1 | 45.65 ± 0.76% | [ |
Cu97In3-C | alloying | CO2 | NO3− | -1.4 V vs. RHE | urea | 13.1 mmol g-1 h-1 | N.A. | [ |
Cu-Hg alloys | alloying | oxalic acid | NO3− | -1.4 V vs. Ag/AgCl | glycine | N.A. | 43.1% | [ |
|
[1] | 康馨, 余强敏, 张天昊, 胡书萁, 刘鹤鸣, 张致远, 刘碧录. 大电流密度过渡金属硫族化合物析氢催化剂界面工程展望[J]. 催化学报, 2024, 56(1): 9-24. |
[2] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[3] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[4] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[5] | 李慧珍, 陈艳蕾, 牛青, 王小凤, 刘哲源, 毕进红, 于岩, 李留义. 具有定向电荷传递能力的晶态线型聚酰亚胺材料驱动光催化CO2还原[J]. 催化学报, 2023, 49(6): 152-159. |
[6] | 李孜孜, 王嘉蔚, 黄衍钧, 欧阳钢锋. 钴(II)酞菁全氟化策略用于提升非贵金属体系中光催化还原CO2性能[J]. 催化学报, 2023, 49(6): 160-167. |
[7] | 李静静, 张锋伟, 詹新雨, 郭河芳, 张涵, 昝文艳, 孙振宇, 张献明. 酞菁镍分子结构的精确设计: 优化电子和空间效应用于CO2电还原[J]. 催化学报, 2023, 48(5): 117-126. |
[8] | 姜润, 乔泽龙, 许昊翔, 曹达鹏. 用于氧还原反应的Fe-N-C单原子催化剂的缺陷工程[J]. 催化学报, 2023, 48(5): 224-234. |
[9] | 詹麒尼, 帅婷玉, 徐慧民, 黄陈金, 张志杰, 李高仁. 单原子催化剂的合成及其在电化学能量转换中的应用[J]. 催化学报, 2023, 47(4): 32-66. |
[10] | 刘小妮, 刘晓斌, 李彩霞, 杨波, 王磊. 缺陷工程在金属基电池中的研究进展[J]. 催化学报, 2023, 45(2): 27-87. |
[11] | 刘成, 刘胡润卿, 余济美, 吴棱, 李朝辉. 高效光催化金属有机框架(MOFs)的构筑策略[J]. 催化学报, 2023, 55(12): 1-19. |
[12] | 杨竣皓, 安露露, 王双, 张辰浩, 罗官宇, 陈应泉, 杨会颖, 王得丽. 层状双氢氧化物基电解水催化剂的缺陷工程调控策略[J]. 催化学报, 2023, 55(12): 116-136. |
[13] | 卞磊, 张紫阳, 田昊, 田娜娜, 马智, 王中利. 具有丰富晶界的铜催化剂在气-液平衡扩散电极上高效电还原CO2制C2H4[J]. 催化学报, 2023, 54(11): 199-211. |
[14] | 钟蕤羽, 梁玉洁, 黄菲, 梁诗诺, 刘升卫. 一维g-C3N4/二维Ti3C2Tx界面调制促进光催化CO2还原活性与选择性[J]. 催化学报, 2023, 53(10): 109-122. |
[15] | 杨金曼, 杨铮睿, 杨科芬, 于卿, 朱兴旺, 许晖, 李华明. 铟基三元金属硫化物催化剂在光催化二氧化碳还原领域中的研究进展[J]. 催化学报, 2023, 44(1): 67-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||