催化学报 ›› 2024, Vol. 57: 18-50.DOI: 10.1016/S1872-2067(23)64593-0
收稿日期:
2023-11-09
接受日期:
2024-01-03
出版日期:
2024-02-18
发布日期:
2024-02-10
通讯作者:
* 电子信箱: 基金资助:
Min Lia, Shixin Yub,*(), Hongwei Huangc,*(
)
Received:
2023-11-09
Accepted:
2024-01-03
Online:
2024-02-18
Published:
2024-02-10
Contact:
* E-mail: About author:
Shixin Yu is a lecturer at Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University. He graduated from China University of Geosciences (Beijing) with a doctorate in Materials Science and Technology in 2020. His research interests focus on lignocellulosic biomass high-value utilization and photocatalytic conversion for sustainable materials and chemicals.Supported by:
摘要:
光催化技术能够利用太阳能实现污染物降解和能源物质合成, 被认为是解决环境污染和能源短缺两大难题的极具潜力的方法之一. 探索新型光催化剂是推进光催化技术发展的重要途径. 铋系光催化剂因具有独特的晶体结构、良好的杂化电子能带结构和多元的化学组成而表现出较好的光催化性能. 多种传统铋系光催化剂已被广泛的制备和研究, 它们具有不同的光吸收能力以及氧化还原能力, 已经在污染物降解、水分解产氧等应用中取得成效. 近年来越来越多的新型多元铋系光催化剂被开发, 为不同的光催化反应提供了更多催化剂选择. 因此有必要对近几年开发的新型铋系光催化材料进行总结, 并为铋系光催化材料研究和发展提供一定的参考.
本文综述了近十年共60余种新兴多元铋系光催化剂的研究进展, 从多个角度进行系统的梳理和总结. 首先, 对60余种新型铋系光催化材料进行了汇总, 并根据晶体结构构型进行了分类, 包括Sillén, Sillén-related, Aurivillius, Sillén-Aurivillius以及其他结构类型共5大类, 每种材料都具有从原子尺度到宏观尺度的独特结构, 因此本文进一步对新型铋系材料的结构性规律进行了总结, 主要分为层状铋系化合物和非层状铋系化合物. 在此基础上, 概括了材料的合成方法, 目前多元铋系光催化材料的合成方法主要为水热溶解热法和高温固相法, 分别讨论了不同合成方法对不同结构类型材料制备的优势, 尤其在获得高性能的光催化剂方面, 材料合成方法起到决定性作用. 此外, 归纳了针对提高新兴多元铋系光催化剂性能的修饰策略. 材料改性修饰是目前铋系材料研究的热点, 适当的合成方法结合相应的改性修饰可以获得更理想的光催化材料, 阐述了形貌调控、特定晶面暴露、异质结构建、极性电场构建等方法对新型铋系材料性能促进的机理, 并对各种策略存在的优缺点进行了总结. 同时概述了新型多元铋系材料在不同光催化应用领域的进展, 包括液体和气体污染物的降解、水裂解生成氢气和氧气、二氧化碳还原、固氮、硫化氢裂解生成氢气、有机合成等, 为拓展不同多元铋系光催化剂的应用领域提供参考.
最后, 本文对新型多元铋系材料目前仍存在的关键问题以及未来的研究趋势进行了展望, 希望能为铋系材料的进一步研发提供一定的启发.
李敏, 于世新, 黄洪伟. 新兴的多元铋系光催化剂: 结构分类、制备、改性及应用[J]. 催化学报, 2024, 57: 18-50.
Min Li, Shixin Yu, Hongwei Huang. Emerging polynary bismuth-based photocatalysts: Structural classification, preparation, modification and applications[J]. Chinese Journal of Catalysis, 2024, 57: 18-50.
Fig. 1. The year diagram of the NPBB photocatalysts and their corresponding applications in photocatalysis by first reported (the blue point indicates that the photocatalysts were first reported by our group).
Fig. 4. Crystal structures of Bi3O4Br (a), Bi4O5I2 (b), Bi5O7Br (c), Bi24O31Br10 (d), PbBiO2I (e), SrBiO2Cl (f), LiBi3O4Cl2 (g), Bi2EuO4Cl (h) and Bi2O2S (i). (double cell Z).
Structure type | Photocatalyst | Crystal system | Space group | Synthesis method | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sillén | Bi12O17Cl2 | tetragonal | P4/nmm | hydrothermal: Bi(NO3)3·5H2O, KCl, pH = 12.6, 160 °C for 24 h | [ | |||||||
solid-state reaction: α-Bi2O3, HCl, 350-400 °C for 2 h | [ | |||||||||||
solvothermal and calcination: Bi(NO3)3·5H2O, HCl solution, PVP, NaOH solution, 160 °C for 6 h, then annealing at 500 °C for 4 h | [ | |||||||||||
solid-state reaction: BiOCl, Bi2O3, 600 °C in air for 12 h | [ | |||||||||||
Bi12O17Br2 | tetragonal | P4/nmm | hydrolysis: hemispherical: Bi(NO3)3·5H2O, urea, CTAB; flowerlike: Bi(NO3)3·5H2O, EG, CTAB; platelike: Bi(NO3)3·5H2O, HOAc, CTAB | [ | ||||||||
hydrothermal: BiBr3, absolute alcohol, NaOH solution, 150 °C for 24 h | [ | |||||||||||
Bi24O31Cl10 | monoclinic | A21/m1 | electrochemistry: anode-Bi foil, cathode-Ni foil, electrolyte is NaCl and EDTA, pH = 12 (NaOH solution), 10 V for 2 h | [ | ||||||||
solid-state reaction: Bi(NO3)3·5H2O, dilute nitric acid, CTAC, NaOH solution, 400-800 °C | [ | |||||||||||
hydrothermal: Bi(NO3)3·5H2O, NaCl, pH = 10.3, 160 °C for 18.5 h | [ | |||||||||||
solvothermal and calcination: Bi(NO3)3·5H2O, Ethylene glycol, NH4Cl, 160 °C for 12 h and calcination 500 °C for 4 h | [ | |||||||||||
Bi24O31Br10 | monoclinic | A21/m1 | microwave: Bi(NO3)3·5H2O, CTAB, ethylene glycol, pH = 10.5 (NaOH solution), microwave reaction at 400 W for 3 min | [ | ||||||||
solid-state reaction: Bi(NO3)3·5H2O, dilute nitric acid, CTAB, NaOH solution, then heat treatment under 300-800 °C | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, starch, glycerol, CTAB, NaOH solution, 160 °C for 16 h | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, ethylene glycol, NH4Br, ethanol amine, 160 °C for 12 h | [ | |||||||||||
Bi4O5I2 | monoclinic | P1211 | solvothermal: Bi(NO3)3·5H2O, glycerol, NaI, 130 °C for 12 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, KI, EG, pH=9, 150 °C for 12 h | [ | |||||||||||
microwave: Bi(NO3)3·5H2O, KI, EG, H2O, 120 °C for 12 h | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, [Hmim]I, mannitol solution, pH = 12 (NaOH solution), 140 °C for 24 h | [ | |||||||||||
Bi5O7Br | orthorhombic | cmca | self-assembled method: Bi(NO3)3·5H2O, oleylamine, KBr, water | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, KBr, pH = 13, 160 °C for 16 h | [ | |||||||||||
Bi3O4Br | orthorhombic | pnan | hydrothermal: Bi(NO3)3·5H2O, CTAB, pH = 11.5, 160 °C for 18 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, methanol, CTAB, PVP, pH = 12.3, 180 °C for 24 h | [ | |||||||||||
Bi2EuO4Cl | tetragonal | P4/mmm | solid state reaction: BiOCl, Bi2O3, Eu2O3, 800 °C for 4 h | [ | ||||||||
Bi2NdO4Cl | tetragonal | P4/mmm | solid state reaction: BiOCl, Bi2O3, Nd2O3, 800 °C for 4 h | [ | ||||||||
LiBi3O4Cl2 | tetragonal | I4/mmm | solid state reaction: BiOCl, Li2CO3 and Bi2O3, 500 °C for 6 h, then re-heated at 500, 600, 700 °C or 800 for 12 h | [ | ||||||||
SrBiO2Cl | orthorhombic | Cmcm | solid state reaction: SrCO3, BiOCl, 700 °C for 24 h | [ | ||||||||
BaBiO2Cl | orthorhombic | Cmcm | solid state reaction: BaCO3, BiOCl, 700 °C for 24 h | [ | ||||||||
PbBiO2Cl | tetragonal | I4/mmm | hydrothermal: BiCl3, NaOH, (CH₃COO)2Pb·3H2O, 160 °C for 20 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, Pb(NO3)2, ethylene glycol, [C16mim]Cl, PVP, 160 °C for 24 h | [ | |||||||||||
solid state reaction: PbO, BiOCl, 700 °C for 10 h | [ | |||||||||||
Pb0.6Bi1.4O2Cl1.4 | tetragonal | I4/mmm | top-down wet chemistry desalination: first, Pb0.6Bi1.4Cs0.6O2Cl was synthesized by heating BiOCl, PbO, CsCl at 800 °C for 5 d; next, the material and water were mixed with an ultrasonic bath for 14 d | [ | ||||||||
BaBiO2Br | tetragonal | I4/mmm | solid state reaction: BaCO3, BiOBr, 900 °C for 4 h | [ | ||||||||
SrBiO2Br | tetragonal | Cmcn | solid state reaction: SrCO3, BiOBr, 700 °C for 4 h | [ | ||||||||
PbBiO2I | tetragonal | I4/mmm | hydrothermal: Bi(NO3)3·5H2O, (CH₃COO)2Pb, NaI, 180 °C for 24 h | [ | ||||||||
solvothermal: Bicc(NO3)3·5H2O, Pb(NO3)2, ethylene glycol, [Hmim]I, 180 °C for 24 h | [ | |||||||||||
CdBiO2Br | tetragonal | I4/mmm | hydrothermal: Bi(NO3)3·5H2O, (CH3COO)2Cd·2H2O, KBr, pH = 10 (NH3·H2O), 180 °C for 12 h | [ | ||||||||
Bi2YO4Cl | tetragonal | P4/mmm | solid state reaction: Bi2O3, BiOCl, Nb2O5, 800 °C for 12 h | [ | ||||||||
Bi2O2(S, Se) | orthorhombic | Pnnm | hydrothermal: Bi(NO3)3·5H2O, SC(NH2)2 or SeC(NH2)2, LiOH·H2O, 200 °C for 12 h | [ | ||||||||
Sillén- related | Bi2O2(OH)(NO3) | orthorhombic | Cmc21 | hydrothermal: Bi(NO3)3·5H2O, pH = 1, 1.5, 2, 3, 4, 180 °C for 24 h | [ | |||||||
hydrothermal: Bi(NO3)3·5H2O, glacial acetic acid, 150 °C for 5 h | [ | |||||||||||
Bi2O2[BO2(OH)] | monoclinic | Cm | hydrothermal: Bi2B2O9, water, 200 °C for 24 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, H3BO3, PVP, 120°C for 24 h | [ | |||||||||||
BiOIO3 | orthorhombic | Pca21 | hydrothermal: Bi(NO3)3·5H2O, KIO3, 150 °C for 5 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, I2O5, 180 °C for 24 h | [ | |||||||||||
Aurivillius | Bi2CrO6 | triclinic | P-1 | hydrothermal: Bi(NO3)3·5H2O, K2CrO4, nitric acid, ammonia, 180 °C for 6 h | [ | |||||||
CdBi2Nb2O9 | orthorhombic | P212121 | combustion method: Cd(NO3)2, Bi(NO3)3·5H2O, Nb(OH)5; urea, glycine, ammonium nitrate and starch as a fuel, 600 °C for 4 h | [ | ||||||||
Bi2(Nb, Ta)O5F | tetragonal | I4/mmm | hydrothermal: Nb2O5 or Ta2O5, HF, Bi(NO3)3·5H2O, EG, 150 °C for 12 h | [ | ||||||||
SrBi4Ti4O15 | orthorhombic | A21am | hydrothermal: Ti(OC4H9)4, NaOH solution, Bi(NO3)3·5H2O, SrCl2·6H2O, 180 °C for 12 h | [ | ||||||||
solid state reaction: Sr(NO3)2, Bi2O3, TiO2, KCl, NaCl, 850 °C for 10 h | [ | |||||||||||
Pb2Bi4Ti5O18 | orthorhombic | Aba2 | solid state reaction: PbO, Bi2O3, TiO2, salt (KCl, NaCl, Na2SO4, NaH2PO4), 900 °C for 15 h | [ | ||||||||
CaBi2B2O7 | orthorhombic | Pna21 | solid state reaction: Bi2O3, H3BO3, CaCO3, 500 °C for 2 h and then 680 °C for 6 h | [ | ||||||||
SrBi2B2O7 | hexagonal | P63 | solid state reaction: Bi2O3, H3BO3, SrCO3, 500 °C for 2 h and then 690 °C for 6 h | [ | ||||||||
Sillén- Aurivillius | Bi4NbO8Br | orthorhombic | P21cn | solid state reaction: Bi2O3, Nb2O5, BiOBr, 750 °C for 4 h | [ | |||||||
Bi4VO8Cl | orthorhombic | P21cn | hydrothermal: Bi(NO3)3·5H2O, BiOCl, HNO3, NH4VO3, NH3·OH, pH = 3, 160 °C for 20 h | [ | ||||||||
solid state reaction: Bi(NO3)3·5H2O, BiOCl, NH4VO3, 700 °C for 24 h | [ | |||||||||||
Bi4SbO8Cl | orthorhombic | P21cn | solid state reaction: Bi2O3, Sb2O3, NH4Cl, 850 °C for 6 h | [ | ||||||||
Bi3LaNbO8X (X = Cl, Br) | orthorhombic | P21cn | solid state reaction: Bi2O3, La2O3 (preheated at 950 °C), Nb2O5, BiOCl or BiOBr, 700 °C for 12 h | [ | ||||||||
Bi4Ti0.5W0.5O8Cl | — | — | solid state reaction: Bi2O3, BiOCl, TiO2, WO3, 720 °C for 24 h | [ | ||||||||
Bi6NbWO14Cl | orthorhombic | Fmmm | solid state reaction: Bi2O3, BiOCl, Nb2O5, WO3, 800 °C for 20 h | [ | ||||||||
Bi5X (X = Sr, Pb, Ba)Ti3O14Cl | orthorhombic | P2an | solid state reaction: XBiO2Cl (X = Pb, Sr) (PbO or SrCO3, BiOCl 700 °C for 10 h), Bi4Ti3O12 (Bi2O3, TiO2, 800 °C for 1 h, then 1000 °C for 10 h), 900 °C for 20 h | [ | ||||||||
BaxBi5TiyOzCl | tetragonal | P4/mmm | solid state reaction: BaBiO2Cl, Bi4TixOy, 900 °C for 10 h | [ | ||||||||
Other | Bi(IO3)3 | monoclinic | P2/n | hydrothermal: Bi(NO3)3·5H2O, I2O5, 180 °C for 24 h | [ | |||||||
BiCuSeO | tetragonal | P4/nmm | solid state reaction: Bi2O3, Cu, Bi and Se powders, 300 °C for 5 h and then 700 °C for 10 h | [ | ||||||||
Bi4B2O9 | monoclinic | P2/c | solid-state reaction: Bi2O3, H3BO3, 600 °C for 10 h | [ | ||||||||
Bi2Ga4O9 | orthorhombic | Pbam | hydrothermal: Bi(NO3)3·5H2O, NaGaO2, pH = 9.13, 200 °C for 12 h | [ | ||||||||
solid state reaction: Bi2O3, Ga2O3, 600 °C for 10 h, 800 °C for 10 h; Sol-gel method: Ga2O3 in HNO3 solution at 180 °C for 10 h, Bi(NO3)3·5H2O, citric acid, 200, 250, and 500 °C, respectively, 10 h, then 670 °C for 10 h | [ | |||||||||||
Bi2Al4O9 | orthorhombic | Pbam | Co-precipitation and calcination: Bi(NO3)3·5H2O, starch, Al(NO3)3·9H2O solution, 100 °C for 1 h, then 120 °C for 1 h, calcinated at 800°C for 1 h | [ | ||||||||
Bi12MnO20 | cubic | I23 | sol-gel method: citric acid monohydrate, Bi(NO3)3·5H2O, EDTA, ammonia, C4H6MnO4·4H2O, water-bath (80 °C), further scorched 2 h at 400 °C, calcinated at 550 °C for 4 h | [ | ||||||||
Bi12GeO20 | cubic | I23 | hydrothermal: Bi(NO3)3·5H2O, GeO2, NaOH solution, 180°C for 20 h | [ | ||||||||
BiPW12O40 | tetragonal | P4/nmm | co-precipitation and calcination: Bi(NO3)3·5H2O, ethylene glycol, H3PW12O40 solution, dried at 130 °C, then 200-400 °C for 3 h | [ | ||||||||
Bi4MoO9 | cubic | F | hydrothermal: Bi(NO3)3·5H2O, HNO3, (NH4)6Mo7O24·4H2O, oleylamine, NaOH, pH = 7, 160 °C for 24 h | [ | ||||||||
Bi6Mo2O15 | monoclinic | P2/c | solid-state reaction: Bi(NO3)3·5H2O, Na2MoO4·2H2O and NaNO3, 500 °C for 10 h | [ | ||||||||
Bi6Cr2O15 | orthorhombic | Ccc2 | co-precipitation and calcination: Cr(NO3)3, Bi(NO3)3, NaOH solution, filtrated and dried, then calcinated at 500 °C for 2 h | [ | ||||||||
Bi6S2O15 | — | — | hydrothermal: Na2SO4 solution, Bi(NO3)3·5H2O solution, NH3·H2O, 180 °C for 24 h | [ | ||||||||
Bi14MoO24 | tetragonal | I4/m | co-precipitation and calcination: Bi(NO3)3·5H2O, (NH4)6Mo7O24·4H2O, NH3·H2O, solution was stirred, filtrated and dried, then calcinated at 650 °C for 2 h | [ | ||||||||
Bi14CrO24 | tetragonal | I4/m | co-precipitation and calcination: Bi(NO3)3·5H2O, mannitol, Cr(NO3)3, dried at 80 °C to the state of a xerogel, then calcinated at 550 °C for 3 h | [ | ||||||||
Cr2Bi3O11 | — | — | co-precipitation: Bi(NO3)3·5H2O, Na2CrO4, deionized water, stirred at 80 °C for 60 min | [ | ||||||||
Bi2(CrO4)3 | — | — | co-precipitation: Bi(NO3)3·5H2O, glacial acetic acid, Na2CrO4 solution | [ | ||||||||
Bi8(CrO4)O11 | monoclinic | P21/m | hydrothermal: NaBiO3 solution, Cr(NO)3 solution, 180 °C for 6 h | [ | ||||||||
BiMXO5 (M = Mg, Cd, Ni, Co, Pb; X = V, P | monoclinic | P21/n | solid-state reaction: 750-815 °C for 24 h | [ | ||||||||
Na3Bi2(PO4)3 | hexagonal | P63/m | solid-state reaction: Bi2O3, Na2CO3, NH4H2PO4, 650 °C for 20 h | [ | ||||||||
Na3Bi(PO4)2 | monoclinic | P2/c | solid-state reaction: Bi2O3, Na2CO3, NH4H2PO4, 650 °C for 20 h | [ | ||||||||
ZnBi2O4 | tetragonal | P4/ncc | sol-gel method and calcination: Bi(NO3)3·5H2O, acetone, glycerol, nitric acid, Zn(NO3)2, 120 °C dried for 1 h, 500 °C calcined for 3 h | [ | ||||||||
slid-state reaction: Bi(NO3)3·5H2O, Zn(NO3)2·6H2O, nitric acid, NaOH, 75 °C stirring for 24 h, 450 °C calcined for 3 h | [ | |||||||||||
CuBi2O4 | tetragonal | P4/ncc | hydrothermal: Cu(CH3COO)2·H2O, Bi(NO3)3·5H2O, KOH solution, 150 °C for 12 h | [ | ||||||||
K2Bi(PO4)(MoO4) | orthorhombic | Ibca | slid-state reaction: Bi2O3, K2CO3, NH4H2PO4, MoO3, 500, 600 and 700 °C for 10 h | [ | ||||||||
Bi2O(OH)2SO4 | monoclinic | P21/c | water-bath method: Bi(NO3)3·5H2O, distilled water, Na2SO4, 60 °C for 6 h in water bath, pH = 1-2 | [ | ||||||||
Bi3O(OH)(PO4)2 | triclinic | P1⁻ | hydrothermal: Bi(NO3)3·5H2O, NH4H2PO4 solution, pH = 10, 180 °C for 48 h | [ | ||||||||
Bi(C2O4)OH | orthorhombic | Pnma | precipitation: Bi(NO3)3·5H2O, deionized water, H2C2O4·2H2O, 1 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, oxalate source, 120 °C for 12 h | [ | |||||||||||
Bi6O6(OH)2(NO3)4·2H2O | — | — | hydrolysis: Bi(NO)3·5H2O, 2-methoxyethanol, urea solution, 10 h | [ | ||||||||
Bi6O4(OH)4(NO3)6·4H2O | mnoclinic | P21/c | hydrolysis: Bi(NO)3·5H2O, 120 °C for 24 h in vacuum oven | [ |
Table 1 The structure type, space group and synthesis methods of PBB photocatalysts.
Structure type | Photocatalyst | Crystal system | Space group | Synthesis method | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sillén | Bi12O17Cl2 | tetragonal | P4/nmm | hydrothermal: Bi(NO3)3·5H2O, KCl, pH = 12.6, 160 °C for 24 h | [ | |||||||
solid-state reaction: α-Bi2O3, HCl, 350-400 °C for 2 h | [ | |||||||||||
solvothermal and calcination: Bi(NO3)3·5H2O, HCl solution, PVP, NaOH solution, 160 °C for 6 h, then annealing at 500 °C for 4 h | [ | |||||||||||
solid-state reaction: BiOCl, Bi2O3, 600 °C in air for 12 h | [ | |||||||||||
Bi12O17Br2 | tetragonal | P4/nmm | hydrolysis: hemispherical: Bi(NO3)3·5H2O, urea, CTAB; flowerlike: Bi(NO3)3·5H2O, EG, CTAB; platelike: Bi(NO3)3·5H2O, HOAc, CTAB | [ | ||||||||
hydrothermal: BiBr3, absolute alcohol, NaOH solution, 150 °C for 24 h | [ | |||||||||||
Bi24O31Cl10 | monoclinic | A21/m1 | electrochemistry: anode-Bi foil, cathode-Ni foil, electrolyte is NaCl and EDTA, pH = 12 (NaOH solution), 10 V for 2 h | [ | ||||||||
solid-state reaction: Bi(NO3)3·5H2O, dilute nitric acid, CTAC, NaOH solution, 400-800 °C | [ | |||||||||||
hydrothermal: Bi(NO3)3·5H2O, NaCl, pH = 10.3, 160 °C for 18.5 h | [ | |||||||||||
solvothermal and calcination: Bi(NO3)3·5H2O, Ethylene glycol, NH4Cl, 160 °C for 12 h and calcination 500 °C for 4 h | [ | |||||||||||
Bi24O31Br10 | monoclinic | A21/m1 | microwave: Bi(NO3)3·5H2O, CTAB, ethylene glycol, pH = 10.5 (NaOH solution), microwave reaction at 400 W for 3 min | [ | ||||||||
solid-state reaction: Bi(NO3)3·5H2O, dilute nitric acid, CTAB, NaOH solution, then heat treatment under 300-800 °C | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, starch, glycerol, CTAB, NaOH solution, 160 °C for 16 h | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, ethylene glycol, NH4Br, ethanol amine, 160 °C for 12 h | [ | |||||||||||
Bi4O5I2 | monoclinic | P1211 | solvothermal: Bi(NO3)3·5H2O, glycerol, NaI, 130 °C for 12 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, KI, EG, pH=9, 150 °C for 12 h | [ | |||||||||||
microwave: Bi(NO3)3·5H2O, KI, EG, H2O, 120 °C for 12 h | [ | |||||||||||
solvothermal: Bi(NO3)3·5H2O, [Hmim]I, mannitol solution, pH = 12 (NaOH solution), 140 °C for 24 h | [ | |||||||||||
Bi5O7Br | orthorhombic | cmca | self-assembled method: Bi(NO3)3·5H2O, oleylamine, KBr, water | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, KBr, pH = 13, 160 °C for 16 h | [ | |||||||||||
Bi3O4Br | orthorhombic | pnan | hydrothermal: Bi(NO3)3·5H2O, CTAB, pH = 11.5, 160 °C for 18 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, methanol, CTAB, PVP, pH = 12.3, 180 °C for 24 h | [ | |||||||||||
Bi2EuO4Cl | tetragonal | P4/mmm | solid state reaction: BiOCl, Bi2O3, Eu2O3, 800 °C for 4 h | [ | ||||||||
Bi2NdO4Cl | tetragonal | P4/mmm | solid state reaction: BiOCl, Bi2O3, Nd2O3, 800 °C for 4 h | [ | ||||||||
LiBi3O4Cl2 | tetragonal | I4/mmm | solid state reaction: BiOCl, Li2CO3 and Bi2O3, 500 °C for 6 h, then re-heated at 500, 600, 700 °C or 800 for 12 h | [ | ||||||||
SrBiO2Cl | orthorhombic | Cmcm | solid state reaction: SrCO3, BiOCl, 700 °C for 24 h | [ | ||||||||
BaBiO2Cl | orthorhombic | Cmcm | solid state reaction: BaCO3, BiOCl, 700 °C for 24 h | [ | ||||||||
PbBiO2Cl | tetragonal | I4/mmm | hydrothermal: BiCl3, NaOH, (CH₃COO)2Pb·3H2O, 160 °C for 20 h | [ | ||||||||
solvothermal: Bi(NO3)3·5H2O, Pb(NO3)2, ethylene glycol, [C16mim]Cl, PVP, 160 °C for 24 h | [ | |||||||||||
solid state reaction: PbO, BiOCl, 700 °C for 10 h | [ | |||||||||||
Pb0.6Bi1.4O2Cl1.4 | tetragonal | I4/mmm | top-down wet chemistry desalination: first, Pb0.6Bi1.4Cs0.6O2Cl was synthesized by heating BiOCl, PbO, CsCl at 800 °C for 5 d; next, the material and water were mixed with an ultrasonic bath for 14 d | [ | ||||||||
BaBiO2Br | tetragonal | I4/mmm | solid state reaction: BaCO3, BiOBr, 900 °C for 4 h | [ | ||||||||
SrBiO2Br | tetragonal | Cmcn | solid state reaction: SrCO3, BiOBr, 700 °C for 4 h | [ | ||||||||
PbBiO2I | tetragonal | I4/mmm | hydrothermal: Bi(NO3)3·5H2O, (CH₃COO)2Pb, NaI, 180 °C for 24 h | [ | ||||||||
solvothermal: Bicc(NO3)3·5H2O, Pb(NO3)2, ethylene glycol, [Hmim]I, 180 °C for 24 h | [ | |||||||||||
CdBiO2Br | tetragonal | I4/mmm | hydrothermal: Bi(NO3)3·5H2O, (CH3COO)2Cd·2H2O, KBr, pH = 10 (NH3·H2O), 180 °C for 12 h | [ | ||||||||
Bi2YO4Cl | tetragonal | P4/mmm | solid state reaction: Bi2O3, BiOCl, Nb2O5, 800 °C for 12 h | [ | ||||||||
Bi2O2(S, Se) | orthorhombic | Pnnm | hydrothermal: Bi(NO3)3·5H2O, SC(NH2)2 or SeC(NH2)2, LiOH·H2O, 200 °C for 12 h | [ | ||||||||
Sillén- related | Bi2O2(OH)(NO3) | orthorhombic | Cmc21 | hydrothermal: Bi(NO3)3·5H2O, pH = 1, 1.5, 2, 3, 4, 180 °C for 24 h | [ | |||||||
hydrothermal: Bi(NO3)3·5H2O, glacial acetic acid, 150 °C for 5 h | [ | |||||||||||
Bi2O2[BO2(OH)] | monoclinic | Cm | hydrothermal: Bi2B2O9, water, 200 °C for 24 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, H3BO3, PVP, 120°C for 24 h | [ | |||||||||||
BiOIO3 | orthorhombic | Pca21 | hydrothermal: Bi(NO3)3·5H2O, KIO3, 150 °C for 5 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, I2O5, 180 °C for 24 h | [ | |||||||||||
Aurivillius | Bi2CrO6 | triclinic | P-1 | hydrothermal: Bi(NO3)3·5H2O, K2CrO4, nitric acid, ammonia, 180 °C for 6 h | [ | |||||||
CdBi2Nb2O9 | orthorhombic | P212121 | combustion method: Cd(NO3)2, Bi(NO3)3·5H2O, Nb(OH)5; urea, glycine, ammonium nitrate and starch as a fuel, 600 °C for 4 h | [ | ||||||||
Bi2(Nb, Ta)O5F | tetragonal | I4/mmm | hydrothermal: Nb2O5 or Ta2O5, HF, Bi(NO3)3·5H2O, EG, 150 °C for 12 h | [ | ||||||||
SrBi4Ti4O15 | orthorhombic | A21am | hydrothermal: Ti(OC4H9)4, NaOH solution, Bi(NO3)3·5H2O, SrCl2·6H2O, 180 °C for 12 h | [ | ||||||||
solid state reaction: Sr(NO3)2, Bi2O3, TiO2, KCl, NaCl, 850 °C for 10 h | [ | |||||||||||
Pb2Bi4Ti5O18 | orthorhombic | Aba2 | solid state reaction: PbO, Bi2O3, TiO2, salt (KCl, NaCl, Na2SO4, NaH2PO4), 900 °C for 15 h | [ | ||||||||
CaBi2B2O7 | orthorhombic | Pna21 | solid state reaction: Bi2O3, H3BO3, CaCO3, 500 °C for 2 h and then 680 °C for 6 h | [ | ||||||||
SrBi2B2O7 | hexagonal | P63 | solid state reaction: Bi2O3, H3BO3, SrCO3, 500 °C for 2 h and then 690 °C for 6 h | [ | ||||||||
Sillén- Aurivillius | Bi4NbO8Br | orthorhombic | P21cn | solid state reaction: Bi2O3, Nb2O5, BiOBr, 750 °C for 4 h | [ | |||||||
Bi4VO8Cl | orthorhombic | P21cn | hydrothermal: Bi(NO3)3·5H2O, BiOCl, HNO3, NH4VO3, NH3·OH, pH = 3, 160 °C for 20 h | [ | ||||||||
solid state reaction: Bi(NO3)3·5H2O, BiOCl, NH4VO3, 700 °C for 24 h | [ | |||||||||||
Bi4SbO8Cl | orthorhombic | P21cn | solid state reaction: Bi2O3, Sb2O3, NH4Cl, 850 °C for 6 h | [ | ||||||||
Bi3LaNbO8X (X = Cl, Br) | orthorhombic | P21cn | solid state reaction: Bi2O3, La2O3 (preheated at 950 °C), Nb2O5, BiOCl or BiOBr, 700 °C for 12 h | [ | ||||||||
Bi4Ti0.5W0.5O8Cl | — | — | solid state reaction: Bi2O3, BiOCl, TiO2, WO3, 720 °C for 24 h | [ | ||||||||
Bi6NbWO14Cl | orthorhombic | Fmmm | solid state reaction: Bi2O3, BiOCl, Nb2O5, WO3, 800 °C for 20 h | [ | ||||||||
Bi5X (X = Sr, Pb, Ba)Ti3O14Cl | orthorhombic | P2an | solid state reaction: XBiO2Cl (X = Pb, Sr) (PbO or SrCO3, BiOCl 700 °C for 10 h), Bi4Ti3O12 (Bi2O3, TiO2, 800 °C for 1 h, then 1000 °C for 10 h), 900 °C for 20 h | [ | ||||||||
BaxBi5TiyOzCl | tetragonal | P4/mmm | solid state reaction: BaBiO2Cl, Bi4TixOy, 900 °C for 10 h | [ | ||||||||
Other | Bi(IO3)3 | monoclinic | P2/n | hydrothermal: Bi(NO3)3·5H2O, I2O5, 180 °C for 24 h | [ | |||||||
BiCuSeO | tetragonal | P4/nmm | solid state reaction: Bi2O3, Cu, Bi and Se powders, 300 °C for 5 h and then 700 °C for 10 h | [ | ||||||||
Bi4B2O9 | monoclinic | P2/c | solid-state reaction: Bi2O3, H3BO3, 600 °C for 10 h | [ | ||||||||
Bi2Ga4O9 | orthorhombic | Pbam | hydrothermal: Bi(NO3)3·5H2O, NaGaO2, pH = 9.13, 200 °C for 12 h | [ | ||||||||
solid state reaction: Bi2O3, Ga2O3, 600 °C for 10 h, 800 °C for 10 h; Sol-gel method: Ga2O3 in HNO3 solution at 180 °C for 10 h, Bi(NO3)3·5H2O, citric acid, 200, 250, and 500 °C, respectively, 10 h, then 670 °C for 10 h | [ | |||||||||||
Bi2Al4O9 | orthorhombic | Pbam | Co-precipitation and calcination: Bi(NO3)3·5H2O, starch, Al(NO3)3·9H2O solution, 100 °C for 1 h, then 120 °C for 1 h, calcinated at 800°C for 1 h | [ | ||||||||
Bi12MnO20 | cubic | I23 | sol-gel method: citric acid monohydrate, Bi(NO3)3·5H2O, EDTA, ammonia, C4H6MnO4·4H2O, water-bath (80 °C), further scorched 2 h at 400 °C, calcinated at 550 °C for 4 h | [ | ||||||||
Bi12GeO20 | cubic | I23 | hydrothermal: Bi(NO3)3·5H2O, GeO2, NaOH solution, 180°C for 20 h | [ | ||||||||
BiPW12O40 | tetragonal | P4/nmm | co-precipitation and calcination: Bi(NO3)3·5H2O, ethylene glycol, H3PW12O40 solution, dried at 130 °C, then 200-400 °C for 3 h | [ | ||||||||
Bi4MoO9 | cubic | F | hydrothermal: Bi(NO3)3·5H2O, HNO3, (NH4)6Mo7O24·4H2O, oleylamine, NaOH, pH = 7, 160 °C for 24 h | [ | ||||||||
Bi6Mo2O15 | monoclinic | P2/c | solid-state reaction: Bi(NO3)3·5H2O, Na2MoO4·2H2O and NaNO3, 500 °C for 10 h | [ | ||||||||
Bi6Cr2O15 | orthorhombic | Ccc2 | co-precipitation and calcination: Cr(NO3)3, Bi(NO3)3, NaOH solution, filtrated and dried, then calcinated at 500 °C for 2 h | [ | ||||||||
Bi6S2O15 | — | — | hydrothermal: Na2SO4 solution, Bi(NO3)3·5H2O solution, NH3·H2O, 180 °C for 24 h | [ | ||||||||
Bi14MoO24 | tetragonal | I4/m | co-precipitation and calcination: Bi(NO3)3·5H2O, (NH4)6Mo7O24·4H2O, NH3·H2O, solution was stirred, filtrated and dried, then calcinated at 650 °C for 2 h | [ | ||||||||
Bi14CrO24 | tetragonal | I4/m | co-precipitation and calcination: Bi(NO3)3·5H2O, mannitol, Cr(NO3)3, dried at 80 °C to the state of a xerogel, then calcinated at 550 °C for 3 h | [ | ||||||||
Cr2Bi3O11 | — | — | co-precipitation: Bi(NO3)3·5H2O, Na2CrO4, deionized water, stirred at 80 °C for 60 min | [ | ||||||||
Bi2(CrO4)3 | — | — | co-precipitation: Bi(NO3)3·5H2O, glacial acetic acid, Na2CrO4 solution | [ | ||||||||
Bi8(CrO4)O11 | monoclinic | P21/m | hydrothermal: NaBiO3 solution, Cr(NO)3 solution, 180 °C for 6 h | [ | ||||||||
BiMXO5 (M = Mg, Cd, Ni, Co, Pb; X = V, P | monoclinic | P21/n | solid-state reaction: 750-815 °C for 24 h | [ | ||||||||
Na3Bi2(PO4)3 | hexagonal | P63/m | solid-state reaction: Bi2O3, Na2CO3, NH4H2PO4, 650 °C for 20 h | [ | ||||||||
Na3Bi(PO4)2 | monoclinic | P2/c | solid-state reaction: Bi2O3, Na2CO3, NH4H2PO4, 650 °C for 20 h | [ | ||||||||
ZnBi2O4 | tetragonal | P4/ncc | sol-gel method and calcination: Bi(NO3)3·5H2O, acetone, glycerol, nitric acid, Zn(NO3)2, 120 °C dried for 1 h, 500 °C calcined for 3 h | [ | ||||||||
slid-state reaction: Bi(NO3)3·5H2O, Zn(NO3)2·6H2O, nitric acid, NaOH, 75 °C stirring for 24 h, 450 °C calcined for 3 h | [ | |||||||||||
CuBi2O4 | tetragonal | P4/ncc | hydrothermal: Cu(CH3COO)2·H2O, Bi(NO3)3·5H2O, KOH solution, 150 °C for 12 h | [ | ||||||||
K2Bi(PO4)(MoO4) | orthorhombic | Ibca | slid-state reaction: Bi2O3, K2CO3, NH4H2PO4, MoO3, 500, 600 and 700 °C for 10 h | [ | ||||||||
Bi2O(OH)2SO4 | monoclinic | P21/c | water-bath method: Bi(NO3)3·5H2O, distilled water, Na2SO4, 60 °C for 6 h in water bath, pH = 1-2 | [ | ||||||||
Bi3O(OH)(PO4)2 | triclinic | P1⁻ | hydrothermal: Bi(NO3)3·5H2O, NH4H2PO4 solution, pH = 10, 180 °C for 48 h | [ | ||||||||
Bi(C2O4)OH | orthorhombic | Pnma | precipitation: Bi(NO3)3·5H2O, deionized water, H2C2O4·2H2O, 1 h | [ | ||||||||
hydrothermal: Bi(NO3)3·5H2O, oxalate source, 120 °C for 12 h | [ | |||||||||||
Bi6O6(OH)2(NO3)4·2H2O | — | — | hydrolysis: Bi(NO)3·5H2O, 2-methoxyethanol, urea solution, 10 h | [ | ||||||||
Bi6O4(OH)4(NO3)6·4H2O | mnoclinic | P21/c | hydrolysis: Bi(NO)3·5H2O, 120 °C for 24 h in vacuum oven | [ |
Fig. 9. Different morphologies of several PBB photocatalysts. (a) SEM image of Bi24O31Cl10 [127]. Copyright 2016, Tsinghua University Press and Springer-Verlag Berlin Heidelberg. (b) FESEM image of Bi4O5I2 [128]. Copyright 2016, Elsevier Ltd. (c) TEM image of Bi3O4Br [103]. Copyright 2017, Royal Society of Chemistry. (d) SEM image of Bi24O31Br10 [100]. Copyright 2016, Elsevier Ltd. (e) SEM image of Bi2O2(OH)2(NO3) [107]. Copyright 2017, Wiley-VCH. (f) TEM image of Bi12O17Br2 [95]. Copyright 2016, Elsevier Ltd. (g) TEM image of Bi2O2S2 [90]. Copyright 2021, Science China Press and Springer-Verlag GmbH Germany. (h) SEM image of Bi(C2O4)OH [126]. Copyright 2016, Royal Society of Chemistry. (i) HADDF-STEM image of Bi5O7Br [93]. Copyright 2017, Wiley-VCH.
Fig. 10. TEM image (a), SAED pattern (b) and crystal structure (c) of Bi2O2(OH)(NO3) in a top view or along the [001] direction. (d) The proposed model of efficient charge separation of Bi2O2(OH)(NO3) [51]. Copyright 2015, Royal Society of Chemistry.
Fig. 11. (a) Schematic diagrams for AgI/Bi4O5I2 Z scheme [135]. Copyright 2018, Elsevier Ltd. (b) Schematic diagrams for efficient charge separation process through the {001} active facets of BiOI and the proposed charge transfer mechanism via p-BiOI/n-Bi12O17Cl2 p-n junction [136]. Copyright 2018, Elsevier Ltd. (c) PbBiO2I/ Bi5O7I/g-C3N4 ternary heterostructured photocatalysts. [143] Copyright 2018, Elsevier Ltd.
Fig. 12. (a) SEM images and schematic of the morphology evolution of BiOIO3 samples. (b) The calculated DOS and scheme of the band alignments of the {010} and {100} facets of BiOIO3. (c) Crystal structure model with photogenerated electrons and holes of facet junction BiOIO3 [197]. Copyright 2018, Wiley-VCH.
Fig. 13. (a) Schematic diagram of charge separation of metal/NPBB photocatalysts. (b) HTEM images of Pt/Bi12O17Cl2 [198]. Copyright 2016, Elsevier Ltd. (c) Separation process of photocharges over Bi/Bi4O5I2 [68]. Copyright 2018, Elsevier Ltd. (d) Schematic diagram of charge separation of carbon/NPBB photocatalysts. (e) HTEM images of CODs/Bi4O5I2 [202]. Copyright 2018, Elsevier Ltd. (f) TEM of N-doped CQDs modified Bi4O5I2 hollow nanotubes [203]. Copyright 2018, Elsevier Ltd.
Fig. 14. The scheme of polarization-promoted bulk charge separation (a) and surface charge separation (b) [212]. Copyright 2019, Wiley-VCH. (c) Crystal structure of V-BiOIO3 along a-b plane and along b-c plane. (d) The scheme of polarization direction and charge transfer direction [216]. Copyright 2017, Wiley-VCH.
Fig. 15. (a) Low-temperature EPR spectra of Bi5O7Br nanotubes before and after light irradiation. (b) Fitted XPS Bi 4f spectra of Bi5O7Br nanotubes [93]. Copyright 2017, Wiley-VCH. (c) HADDF-STEM images of defect-rich Bi3O4Br. (d) Schematic representations of trapped positrons of defect-rich Bi3O4Br. (e) XPS O 1s spectra of Bi3O4Br samples [223]. Copyright 2019, Wiley-VCH.
Fig. 16. (a) Schematic illustration of the proposed carbon doping strategy of carbon-doped Bi24O31Cl10. (b) TG curves. (c) High-resolution C 1s XPS spectra. (d) FT-IR spectra of carbon-doped Bi24O31Cl10 samples. (e) Isosurface conduction, impurity level and valence charge density of C-doped and un-doped Bi24O31Cl10. (f) The schematic illustration of the electronic band structures [224]. Copyright 2018, Royal Society of Chemistry. (g) UV-vis DRS of interlayer-I-doped BiOIO3 samples. (h) DOS of pure BiOIO3 and interlayer-I-doped BiOIO3. (i) Schematic illustration of the photocatalytic enhancement mechanism of interlayer-I-doped BiOIO3 in photocatalytic oxidation of NO [228]. Copyright 2016, Royal Society of Chemistry.
Fig. 17. (a) EDX elemental maps of Bi2O2(OH)(NO3)-Br. (b) XPS spectra of Bi2O2(OH)(NO3)-Br3 with Ar+ sputtering for different times. (c) Surface photovoltage spectra of Bi2O2(OH)(NO3) samples. (d) Charge difference of Bi2O2(OH)(NO3)-Br. (e) Charge difference of CO2 and H+ absorbed Bi2O2(OH)(NO3)-Br [234]. Copyright 2019, Wiley-VCH. (h) DRIFT spectra of Bi24O31Br10(OH)δ, BiOBr, and Bi(OH)3. (g) Model of the two-dimensional material that is characterized by two types of basic sites (surface OH and O atoms with low coordination number) and working principle of the Bi24O31Br10(OH)δ [236]. Copyright 2018, American Chemical Society.
Fig. 19. (a) Schematic diagram of photocatalytic water splitting mechanism and redox potential of H2 and O2 evolution. (b) H2 and O2 evolution using a mixture of Ru-SrTiO3:Rh and Bi6NbWO14Cl in FeCl3 solution (closed circles) and in distilled water (open circles) under visible light irradiation [62]. Copyright 2017, The Chemical Society of Japan. (c) Scheme of Z-scheme overall water splitting system constructed by the Ru/SrTiO3:Rh and IrO2/Bi2CrO6 with Fe3+/2+ as the redox mediator and (d) Time course of the Z-scheme water splitting system [109]. Copyright 2023, Wiley-VCH.
Fig. 20. (a) The thermodynamic redox potentials for various CO2 reduction products. (b) Reductive and oxidative production of SrBi4Ti4O15 during CO2 reduction [55]. (c) In-situ DRIFTS for CO2 photoreduction on SrBi4Ti4O15 under light irradiation for different time [55]. Copyright 2018, Elsevier Ltd. (d) GC-MS spectra of the products with 13CO2 [42]. (e) Photocatalytic CO2RR products under full-spectrum light irradiation [42]. (f) Isosurface of differential charge density of ultrathin Pb0.6Bi1.4O2Cl1.4 [42]. Copyright 2022, Springer Nature.
Catalyst | Condition | Product | Performance (μmol h−1 g−1) | Ref. |
---|---|---|---|---|
Co SAC-Bi3O4Br | catalyst, water, 0.08 MPa CO2 gas, 300 W Xe lamp | CO, CH4 | CO: 107.1; CH4: 0.16 | [ |
Bi/Bi4O5I2 | catalyst, CO2/H2O vapor, 300 W Xe lamp | CO, CH4 | CO: 40.02; CH4:7.19 | [ |
Bi4O5I2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO, CH4 | CO: 19.82; CH4: 0.22 | [ |
Au@Bi12O17Br2 | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO, CH4, C2H6 | CO: ~17; CH4: 2.29; C2H6: 29.26 | [ |
Bi12O17Br2 nanotubes | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 34.5 | [ |
Bi12O17Cl2-OV nanotubes | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 48.6 | [ |
CdS/Bi12O17Cl2 | catalyst with 0.5 wt% Pt load, ultrapure water, CO2 gas, 300 W Xe lamp | CH4 | CH4: 1.28 | [ |
g-C3N4/ Bi12O17Cl2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp with 420 nm filter | CH4 | CH4: 24.4 | [ |
Carbonized polymer Dots/Bi12O17Cl2 | catalyst, deionized water, 80 KPa CO2 gas, 300 W Xe lamp with 400 nm cut-off filter | CO | CO: 3.21 | [ |
Ag/AgCl cluster/Bi12O17Cl2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 9.1 | [ |
CoPc@Bi24O31Br10 | catalyst, DMF, water, TEA, CO2 gas, 20 W LED | CH3OH | CH3OH: 145.2 | [ |
CdS-Bi24O31Br10 | catalyst, acetonitrile, water, TEA, CO2 gas, 300 W Xe lamp with a cut-off filter > 420 nm | CH3OH | CH3OH: ~72.5 | [ |
VBiO-Bi24O31Br10 | catalyst, H2O, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 24.9 | [ |
Bi24O31Cl10-OV | catalyst, distilled water, CO2 gas, 300 W Xe lamp | CO | CO: 0.9 | [ |
C-doped Bi24O31Cl10 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 2.54 | [ |
Sn-BiOBr/BiOIO3 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 7.40 | [ |
BiOIO3-OV nanostrips | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 17.33 | [ |
BiOIO3 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 6.30 | [ |
Thickness of BiOIO3 nanoplates | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 5.42 | [ |
g-C3N4/Bi2O2[BO2(OH)] | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 6.09 | [ |
Bi2O2(NO3)(OH)/g-C3N4 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 14.84 | [ |
Bi2O2(NO3)(OH)/g-C3N4 | catalyst, H2O, 100 KPa CO2 gas, 300 W Xe lamp with AM 1.5G filter | CO | CO: ~5.4 | [ |
Bi2O2(NO3)(OH)-X (X = Cl, Br, I) | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 8.12 | [ |
Bi2Al4O9/β-Bi2O3 | catalyst, water, 0.2 MPa CO2 gas, 300 W Xe lamp | CO | CO: 1.32 | [ |
Bi2O2S-OV | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 420 nm filter | CH4 | CH4: 16.45 | [ |
Ni-Bi2O2S | Catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CH4 | CH4: 50.28 | [ |
Fe-Bi2O2S | catalyst, deionized water, 0.1 MPa CO2, 300 W Xe lamp | CO, CH4 | CO: 2.71; CH4: 1.74 | [ |
Fe2O3/graphene/Bi2O2S | catalyst, deionized water, CO2, 300 W Xe lamp with a 420 nm cutoff filter | CO, CH4, C2H4 | CO: 13.00; CH4: 4.27; C2H4: 2.88 | [ |
Surface iodinated Bi2O2S | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 420 nm cutoff filter | CH4 | CH4: 53.35 | [ |
Bi2O2S@TpPa-2-COF-15 | catalyst, TEOA, acetonitrile, water, 300 W Xe lamp | CO, CH4 | CO: 19.50; CH4: 6.20 | [ |
Ag2O/Bi2O2S | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 800 nm filter | CO, CH4 | CO: 14.49; CH4: 12.06 | [ |
Pt/ZnO/Er-BiCuSeO | catalyst, CO2:H2 = 1:1, 150 °C, 300 W Xe lamp | CO | CO: 2.91 | [ |
Pb0.6Bi1.4O2Cl1.4 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CO, CH4, CH3OH | CO: ~4.5; CH4: ~ <2; CH3OH: ~6.6 | [ |
SrBi4Ti4O15 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CO, CH4 | CO: ~<2; CH4: 19.8 | [ |
N-CQDs/Bi4MoO9 | catalyst, H2O, 88 KPa CO2, 300 W Xe lamp | CO | CO: 3.24 | [ |
Bi6Mo2O15 | — | CH4 | CH4: 17.46 ppm h-1 g-1 | [ |
SrBi4Ti4O15 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CH4 | CH4: 19.8 ppm h-1 g-1 | [ |
Bi2O3 QDs/SrBi4Ti4O15 | catalyst, Na2CO3, H2O, H2SO4, 300 W Xe lamp | CO, CH4 | CO: 18.25; CH4: 7.55 | [ |
Table 2 The reaction condition and performance of photocatalytic CO2 reduction of PBB photocatalysts.
Catalyst | Condition | Product | Performance (μmol h−1 g−1) | Ref. |
---|---|---|---|---|
Co SAC-Bi3O4Br | catalyst, water, 0.08 MPa CO2 gas, 300 W Xe lamp | CO, CH4 | CO: 107.1; CH4: 0.16 | [ |
Bi/Bi4O5I2 | catalyst, CO2/H2O vapor, 300 W Xe lamp | CO, CH4 | CO: 40.02; CH4:7.19 | [ |
Bi4O5I2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO, CH4 | CO: 19.82; CH4: 0.22 | [ |
Au@Bi12O17Br2 | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO, CH4, C2H6 | CO: ~17; CH4: 2.29; C2H6: 29.26 | [ |
Bi12O17Br2 nanotubes | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 34.5 | [ |
Bi12O17Cl2-OV nanotubes | catalyst, distilled water, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 48.6 | [ |
CdS/Bi12O17Cl2 | catalyst with 0.5 wt% Pt load, ultrapure water, CO2 gas, 300 W Xe lamp | CH4 | CH4: 1.28 | [ |
g-C3N4/ Bi12O17Cl2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp with 420 nm filter | CH4 | CH4: 24.4 | [ |
Carbonized polymer Dots/Bi12O17Cl2 | catalyst, deionized water, 80 KPa CO2 gas, 300 W Xe lamp with 400 nm cut-off filter | CO | CO: 3.21 | [ |
Ag/AgCl cluster/Bi12O17Cl2 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 9.1 | [ |
CoPc@Bi24O31Br10 | catalyst, DMF, water, TEA, CO2 gas, 20 W LED | CH3OH | CH3OH: 145.2 | [ |
CdS-Bi24O31Br10 | catalyst, acetonitrile, water, TEA, CO2 gas, 300 W Xe lamp with a cut-off filter > 420 nm | CH3OH | CH3OH: ~72.5 | [ |
VBiO-Bi24O31Br10 | catalyst, H2O, 80 KPa CO2 gas, 300 W Xe lamp | CO | CO: 24.9 | [ |
Bi24O31Cl10-OV | catalyst, distilled water, CO2 gas, 300 W Xe lamp | CO | CO: 0.9 | [ |
C-doped Bi24O31Cl10 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 2.54 | [ |
Sn-BiOBr/BiOIO3 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 7.40 | [ |
BiOIO3-OV nanostrips | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 17.33 | [ |
BiOIO3 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 6.30 | [ |
Thickness of BiOIO3 nanoplates | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 5.42 | [ |
g-C3N4/Bi2O2[BO2(OH)] | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 6.09 | [ |
Bi2O2(NO3)(OH)/g-C3N4 | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 14.84 | [ |
Bi2O2(NO3)(OH)/g-C3N4 | catalyst, H2O, 100 KPa CO2 gas, 300 W Xe lamp with AM 1.5G filter | CO | CO: ~5.4 | [ |
Bi2O2(NO3)(OH)-X (X = Cl, Br, I) | catalyst, NaHCO3, H2SO4, 300 W Xe lamp | CO | CO: 8.12 | [ |
Bi2Al4O9/β-Bi2O3 | catalyst, water, 0.2 MPa CO2 gas, 300 W Xe lamp | CO | CO: 1.32 | [ |
Bi2O2S-OV | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 420 nm filter | CH4 | CH4: 16.45 | [ |
Ni-Bi2O2S | Catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CH4 | CH4: 50.28 | [ |
Fe-Bi2O2S | catalyst, deionized water, 0.1 MPa CO2, 300 W Xe lamp | CO, CH4 | CO: 2.71; CH4: 1.74 | [ |
Fe2O3/graphene/Bi2O2S | catalyst, deionized water, CO2, 300 W Xe lamp with a 420 nm cutoff filter | CO, CH4, C2H4 | CO: 13.00; CH4: 4.27; C2H4: 2.88 | [ |
Surface iodinated Bi2O2S | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 420 nm cutoff filter | CH4 | CH4: 53.35 | [ |
Bi2O2S@TpPa-2-COF-15 | catalyst, TEOA, acetonitrile, water, 300 W Xe lamp | CO, CH4 | CO: 19.50; CH4: 6.20 | [ |
Ag2O/Bi2O2S | catalyst, Na2CO3, H2SO4, 300 W Xe lamp with a 800 nm filter | CO, CH4 | CO: 14.49; CH4: 12.06 | [ |
Pt/ZnO/Er-BiCuSeO | catalyst, CO2:H2 = 1:1, 150 °C, 300 W Xe lamp | CO | CO: 2.91 | [ |
Pb0.6Bi1.4O2Cl1.4 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CO, CH4, CH3OH | CO: ~4.5; CH4: ~ <2; CH3OH: ~6.6 | [ |
SrBi4Ti4O15 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CO, CH4 | CO: ~<2; CH4: 19.8 | [ |
N-CQDs/Bi4MoO9 | catalyst, H2O, 88 KPa CO2, 300 W Xe lamp | CO | CO: 3.24 | [ |
Bi6Mo2O15 | — | CH4 | CH4: 17.46 ppm h-1 g-1 | [ |
SrBi4Ti4O15 | catalyst, Na2CO3, H2SO4, 300 W Xe lamp | CH4 | CH4: 19.8 ppm h-1 g-1 | [ |
Bi2O3 QDs/SrBi4Ti4O15 | catalyst, Na2CO3, H2O, H2SO4, 300 W Xe lamp | CO, CH4 | CO: 18.25; CH4: 7.55 | [ |
Catalyst | Condition | Performance | Ref. |
---|---|---|---|
Defect rich Bi3O4Br | catalyst, distilled water, N2, 300W Xe lamp | NH3: 50.8 μmol h-1 g-1 | [ |
Bi4O5I2-OV | catalyst, distilled water, IPA, N2, 300W Xe lamp | NH3: ~24 μmol h-1L-1 | [ |
Bi5O7Br- OV | catalyst, distilled water, N2, 300W Xe lamp with 400 nm cutoff filter | NH3: 1380 μmol h-1 g-1 | [ |
Mo-Bi5O7Br-OV | catalyst, distilled water, 300W Xe lamp with 420 nm cutoff filter | NH3: 122.9 μmol h-1 g-1 | [ |
Bi5O7Br-OV | catalyst, deionized water, N2, 300W Xe lamp with 400 nm cutoff filter | NH3: 12.72 mmol L-1 h-1 g-1 | [ |
Bi12O17Br2-OV | catalyst, deionized water, N2, 300W Xe lamp | NH3: 620.5 μmol h-1 L-1 | [ |
Table 3 Photocatalytic N2 fixation performance of PBB photocatalysts.
Catalyst | Condition | Performance | Ref. |
---|---|---|---|
Defect rich Bi3O4Br | catalyst, distilled water, N2, 300W Xe lamp | NH3: 50.8 μmol h-1 g-1 | [ |
Bi4O5I2-OV | catalyst, distilled water, IPA, N2, 300W Xe lamp | NH3: ~24 μmol h-1L-1 | [ |
Bi5O7Br- OV | catalyst, distilled water, N2, 300W Xe lamp with 400 nm cutoff filter | NH3: 1380 μmol h-1 g-1 | [ |
Mo-Bi5O7Br-OV | catalyst, distilled water, 300W Xe lamp with 420 nm cutoff filter | NH3: 122.9 μmol h-1 g-1 | [ |
Bi5O7Br-OV | catalyst, deionized water, N2, 300W Xe lamp with 400 nm cutoff filter | NH3: 12.72 mmol L-1 h-1 g-1 | [ |
Bi12O17Br2-OV | catalyst, deionized water, N2, 300W Xe lamp | NH3: 620.5 μmol h-1 L-1 | [ |
Fig. 21. (a) Quantitative determination of NH3 generated by Bi5O7Br samples under visible light (λ > 400 nm) irradiation [93]. (b) Proton NMR (400 MHz) spectra changes as a function of time using 50 vol% 15N2 as the N source [93]. Copyright 2017, Wiley-VCH. (c) Nitrogen adsorption energy on the surfaces of Bi5O7Br samples [278]. (d) Reaction energy diagram of nitrogen fixation catalyzed by Bi5O7Br samples [278]. Copyright 2020, American Chemical Society. (e) Quantitative determination of the generated NH3 by defect-rich SUC Bi3O4Br under light irradiation [223]. (f) In-situ DRFTIRS spectra from defect-rich SUC Bi3O4Br during the photocatalytic N2 fixation [223]. Copyright 2017, Wiley-VCH.
Fig. 22. (a,b) Band positions of the Bi24O31Br10(OH)δ and the redox potentials of O2 and isopropanol, nitrobenzene to azoxybenzene and aniline, oxygen to the superoxide radical, and isopropanol to acetone [235,236]. Copyright 2018, American Chemical Society. Copyright 2019, Wiley-VCH. (c) Photocatalytic performances of Bi-relevant photocatalysts for the oxidation of 1-octanol. (d) In-situ DRIFT of Bi24O31Br10(OH)δ with the presence of CD3OD under deaerated conditions [235]. Copyright 2019, Wiley-VCH.
Fig. 23. (a) Schematic illustration for the mechanism of dye sensitization degradation. (b) SEM images of Bi2O2(OH)(NO3). (c) RhB sensitized photodegradation on Bi2O2(OH)(NO3) samples under visible light. (d) Schematic diagram of dye sensitization degradation of Bi2O2(OH)(NO3) [239]. Copyright 2018, American Chemical Society.
Fig. 24. (a) Reactive oxygen species generated in the photocatalytic redox steps. The ESR signals of DMPO ·OH (b) and DMPO ·O2? (c) for Bi24O31Br10 and BiOBr [282]. Copyright 2018, Elsevier Ltd.
|
[1] | 张勇, 邱俊逸, 朱必成, 孙国太, 程蓓, 王临曦. 空心球状共价有机框架负载金纳米粒子用于光催化生产过氧化氢[J]. 催化学报, 2024, 57(2): 143-153. |
[2] | 金昱丞, 刘小琳, 曲琛, 李长骏, 王海龙, 詹晓宁, 曹昕怡, 李晓锋, 于宝秋, 张琪, 齐冬冬, 姜建壮. 苝二酰亚胺共价有机框架超级还原剂用于高效光催化芳基卤化物还原反应[J]. 催化学报, 2024, 57(2): 171-183. |
[3] | 刘嘉立, 戴慧聪, 刘鑫, 任亦起, 王茂弟, 杨启华. 电荷分离和转移调控光催化剂稳定的Pickering乳液用于光-酶偶联催化[J]. 催化学报, 2024, 57(2): 114-122. |
[4] | 曹可弓, 高田宇, 廖黎丽, 冉川昆, 蒋元旭, 章炜, 周琦, 叶剑衡, 蓝宇, 余达刚. 可见光催化CO2参与的芳基烯烃碳碳双键断键羧基化反应[J]. 催化学报, 2024, 56(1): 74-80. |
[5] | 杨成, 李鑫, 李梅, 梁桂杰, 靳治良. CuMn2O4/石墨炔S型异质结上锚定氧化助催化剂促进曙红敏化光催化析氢[J]. 催化学报, 2024, 56(1): 88-103. |
[6] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[7] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[8] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[9] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[10] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[11] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[12] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[13] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[14] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[15] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||