催化学报 ›› 2024, Vol. 56: 9-24.DOI: 10.1016/S1872-2067(23)64571-1
康馨,1, 余强敏,1, 张天昊, 胡书萁, 刘鹤鸣, 张致远, 刘碧录*()
收稿日期:
2023-10-01
接受日期:
2023-11-16
出版日期:
2024-01-18
发布日期:
2024-01-10
通讯作者:
*电子信箱: bilu.liu@sz.tsinghua.edu.cn (刘碧录).
作者简介:
1共同第一作者.
基金资助:
Xin Kang,1, Qiangmin Yu,1, Tianhao Zhang, Shuqi Hu, Heming Liu, Zhiyuan Zhang, Bilu Liu*()
Received:
2023-10-01
Accepted:
2023-11-16
Online:
2024-01-18
Published:
2024-01-10
Contact:
*E-mail: bilu.liu@sz.tsinghua.edu.cn (B. Liu).
About author:
Bilu Liu is a full professor and principal investigator at Tsinghua Shenzhen International Graduate School (Tsinghua SIGS), Tsinghua University, China. He received his bachelor’s degree in materials chemistry from the University of Science and Technology of China (USTC) in 2006, and PhD degree in materials science from the Institute of Metal Research, Chinese Academy of Sciences (IMR, CAS) in 2012. His research interests cover the chemistry and materials science of low-dimensional materials with emphasis on carbon nanostructures, two-dimensional materials, and their heterostructures. His work relates to the growth mechanism investigation, controlled mass production of these materials and their applications in energy, electronics, optoelectronics, and sensing.Supported by:
摘要:
氢能是未来可持续社会中理想的能量载体, 利用可再生能源电解水制取绿氢的技术受到研究人员的广泛关注. 电解水制绿氢技术由实验室向工业应用跨越的前提是发展大电流密度下性能优异且稳定的电催化剂. 析氢反应(HER)是一种非均相反应, 涉及催化剂-基底、催化剂-电解液、催化剂-气体三个界面. 界面性质会影响电化学传质行为、电荷传输行为和催化剂的力学性质, 从而影响大电流密度下制氢性能. 因此, 优化界面结构和性质是提升大电流密度下电解水催化剂性能并解决电解水技术工业应用挑战的关键.
二维过渡金属硫族化合物(TMDCs)具有电子结构可调、活性位点丰富、合成方法多样等优势, 自1976年首次应用于光电催化水分解反应、加氢脱硫反应以来, 已有大量工作报道了TMDCs催化剂应用于HER. 本文以TMDCs催化剂为例研究界面工程对大电流密度下HER的提升作用及机制. 探讨了电化学反应中上述三个界面上发生的物理化学过程, 系统分析了大电流密度下质量传输、电荷传输速率受限和力学强度不足三方面挑战, 并总结了适用于大电流密度的催化剂性能描述符. 分别归纳了针对以上三个界面的界面工程策略及相应作用, 简要概括为: (1) 催化剂-基底界面结合力增强、界面电阻降低、界面电子结构调控等策略; (2) 催化剂-电解液界面形貌调控、表面化学、电解液环境调控等策略; (3) 催化剂-气体界面疏气性调控、外场作用等策略. 从反应机理研究、膜电极界面设计及电解槽界面性质调控三个角度对电解水反应界面工程未来的发展与应用提出了建议及展望. 在反应机理方面, 大电流条件下的界面性质如界面电阻、传质行为等仍需更深入的认识. 在膜电极中, 催化剂、离子交换膜、离子型聚合物、气体扩散层所形成的多元界面, 尤其是催化剂-膜界面、催化剂-气体扩散层界面的结构仍需进一步优化以提升膜电极的活性及稳定性. 在电解槽界面性质调控方面, 催化剂-基底界面结合力等参数与催化剂寿命间的关系, 电解过程中界面处的温度场及流场分布, 适配于实际生产系统的电流密度等仍需深入研究.
综上, 本文从基本物理化学过程、策略及作用、挑战与展望等多个方面介绍了界面工程. 本文有助于研究人员理解非均相电化学反应过程中界面的重要作用, 提出催化剂、膜电极、电解槽界面设计新策略, 并开发新型表征方法以深入对界面性质的认识, 推动高效电解水技术的开发及应用.
康馨, 余强敏, 张天昊, 胡书萁, 刘鹤鸣, 张致远, 刘碧录. 大电流密度过渡金属硫族化合物析氢催化剂界面工程展望[J]. 催化学报, 2024, 56: 9-24.
Xin Kang, Qiangmin Yu, Tianhao Zhang, Shuqi Hu, Heming Liu, Zhiyuan Zhang, Bilu Liu. A perspective on interface engineering of transition metal dichalcogenides for high-current-density hydrogen evolution[J]. Chinese Journal of Catalysis, 2024, 56: 9-24.
Fig. 1. Milestones in the development of TMDCs for catalysis. Around 1976, TMDC catalysts were first reported. MoS2 constituted a new class of electrodes with unusual photocatalytic, photo-electrocatalytic, and hydrodesulfurization catalytic properties. Around 2006, MoS2 emerged as a new class of HER electrocatalyst under the theoretical guidance. Studies focused on the identification of active sites. Around 2010, the variety of TMDC catalyst family for HER expanded to CoS2, WS2, TaS2, etc. Researchers promote catalytic performance by enriching active sites and modulating intrinsic activity. Around 2019, the industrialization of water electrolysis technology stimulated the development of HCD HER catalyst and interface engineering played a key role in the catalyst design.
Year | Catalyst | Performance | Test condition | Ref. |
---|---|---|---|---|
2019 | MoS2/Mo2C | 220 mV @1000 mA cm-2 24 h @200 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Ti foil, electrode area: 1 cm2 | [ |
2020 | Co-MoS2 | 296 mV @1500 mA cm-2 | three-electrode cell, 0.5 mol L-1 H2SO4, carbon cloth, electrode area: 1 cm2 | [ |
Co/Se-MoS2 | 389 mV @1000 mA cm-2 360 h @1000 mA cm-2 | three-electrode cell, 0.5 mol L-1 H2SO4, carbon fiber paper, electrode area: 1 cm2 | [ | |
2021 | V-MoS2 film | 600 mV @1000 mA cm-2 24 h @50 mA cm-2 | three-electrode cell, 0.5 mol L-1 H2SO4, graphite sheet, electrode area: 1 cm2 | [ |
P-MoS2@CoP | 1.97 V @1000 mA cm-2 40 h @500 mA cm-2 | two-electrode cell, 30 wt% KOH, carbon cloth, electrode area: 1 cm2 | [ | |
CSS-NiS2/MoS2 | 300 mV @1300 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Ni foam, electrode area: 1 cm2 | [ | |
MoS2-Mo2C | 446 mV @1000 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Mo electrode, electrode area: 1 cm2 | [ | |
MoSe2-Mo2N | 462 mV @1000 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Mo mesh, electrode area: 1 cm2 | [ | |
NiSe/Ni3Se2 | 336 mV @1250 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, NF, electrode area: 2 cm2 | [ | |
2D MoS2/EC | 410 mV @1000 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Cu foam, electrode area: 1.5 cm2 | [ | |
Ta-TaS2 | 398 mV @2000 mA cm-2 | three-electrode cell, 0.5 mol L-1 H2SO4, Ta foil, electrode area: 1 cm2 | [ | |
2022 | Co-MoS2/V2C | 296 mV @1000 mA cm-2 50 h @0.33 V | three-electrode cell, 1 mol L-1 KOH, carbon cloth, electrode area: 1.5 cm2 | [ |
N-WS2/Co3N | 1.6 V @3600 mA cm-2 45 h @500 mA cm-2 | two-electrode cell, 1 mol L-1 KOH + 0.5 mol L-1 urea, Ni foam, electrode area: 6 cm2 | [ | |
CuMo6S8 | 334 mV @2500 mA cm-2 100 h @2500 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Cu foam, electrode area: 1 cm2 | [ | |
MoS2NSs | 2.25 V @2000 mA cm-2 40 h @10 mA cm-2 | two-electrode cell, 0.5 mol L-1 H2SO4, CFP electrode, electrode area: 5 cm2 | [ | |
MoS2-P2 | 395 mV @1000 mA cm-2 240 h @-0.3 V vs. RHE | three-electrode cell, 0.5 mol L-1 H2SO4, carbon cloth, electrode area: 2 cm2 | [ | |
WS2-WC | 473 mV @1000 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, W mesh, electrode area: > 1 cm2 | [ | |
Ni3N@2M-MoS2 | 1.64 V @1000 mA cm-2 300 h @1000 mA cm-2 | two-electrode cell, 1 mol L-1 KOH, NF, electrode area: 1 cm2 | [ | |
a-MoWSx/N-RGO | 348 mV @1000 mA cm-2 24 h @400 mV | three-electrode cell, 0.5 mol L-1 H2SO4, carbon paper, electrode area: 1 cm2 | [ | |
NiMoPSO NCAs | 0.551 V @1600 mA cm-2 73 h @100 mA cm-2 | two-electrode cell, 1 mol L-1 KOH + 0.5 mol L-1 N2H4, NF, electrode area: 1 cm2 | [ |
Table 1 Summary of state-of-the-art TMDC electrocatalysts for HER operating under HCD (≥ 1000 mA cm?2) with electrode area ≥ 1 cm2.
Year | Catalyst | Performance | Test condition | Ref. |
---|---|---|---|---|
2019 | MoS2/Mo2C | 220 mV @1000 mA cm-2 24 h @200 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Ti foil, electrode area: 1 cm2 | [ |
2020 | Co-MoS2 | 296 mV @1500 mA cm-2 | three-electrode cell, 0.5 mol L-1 H2SO4, carbon cloth, electrode area: 1 cm2 | [ |
Co/Se-MoS2 | 389 mV @1000 mA cm-2 360 h @1000 mA cm-2 | three-electrode cell, 0.5 mol L-1 H2SO4, carbon fiber paper, electrode area: 1 cm2 | [ | |
2021 | V-MoS2 film | 600 mV @1000 mA cm-2 24 h @50 mA cm-2 | three-electrode cell, 0.5 mol L-1 H2SO4, graphite sheet, electrode area: 1 cm2 | [ |
P-MoS2@CoP | 1.97 V @1000 mA cm-2 40 h @500 mA cm-2 | two-electrode cell, 30 wt% KOH, carbon cloth, electrode area: 1 cm2 | [ | |
CSS-NiS2/MoS2 | 300 mV @1300 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Ni foam, electrode area: 1 cm2 | [ | |
MoS2-Mo2C | 446 mV @1000 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Mo electrode, electrode area: 1 cm2 | [ | |
MoSe2-Mo2N | 462 mV @1000 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Mo mesh, electrode area: 1 cm2 | [ | |
NiSe/Ni3Se2 | 336 mV @1250 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, NF, electrode area: 2 cm2 | [ | |
2D MoS2/EC | 410 mV @1000 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Cu foam, electrode area: 1.5 cm2 | [ | |
Ta-TaS2 | 398 mV @2000 mA cm-2 | three-electrode cell, 0.5 mol L-1 H2SO4, Ta foil, electrode area: 1 cm2 | [ | |
2022 | Co-MoS2/V2C | 296 mV @1000 mA cm-2 50 h @0.33 V | three-electrode cell, 1 mol L-1 KOH, carbon cloth, electrode area: 1.5 cm2 | [ |
N-WS2/Co3N | 1.6 V @3600 mA cm-2 45 h @500 mA cm-2 | two-electrode cell, 1 mol L-1 KOH + 0.5 mol L-1 urea, Ni foam, electrode area: 6 cm2 | [ | |
CuMo6S8 | 334 mV @2500 mA cm-2 100 h @2500 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, Cu foam, electrode area: 1 cm2 | [ | |
MoS2NSs | 2.25 V @2000 mA cm-2 40 h @10 mA cm-2 | two-electrode cell, 0.5 mol L-1 H2SO4, CFP electrode, electrode area: 5 cm2 | [ | |
MoS2-P2 | 395 mV @1000 mA cm-2 240 h @-0.3 V vs. RHE | three-electrode cell, 0.5 mol L-1 H2SO4, carbon cloth, electrode area: 2 cm2 | [ | |
WS2-WC | 473 mV @1000 mA cm-2 | three-electrode cell, 1 mol L-1 KOH, W mesh, electrode area: > 1 cm2 | [ | |
Ni3N@2M-MoS2 | 1.64 V @1000 mA cm-2 300 h @1000 mA cm-2 | two-electrode cell, 1 mol L-1 KOH, NF, electrode area: 1 cm2 | [ | |
a-MoWSx/N-RGO | 348 mV @1000 mA cm-2 24 h @400 mV | three-electrode cell, 0.5 mol L-1 H2SO4, carbon paper, electrode area: 1 cm2 | [ | |
NiMoPSO NCAs | 0.551 V @1600 mA cm-2 73 h @100 mA cm-2 | two-electrode cell, 1 mol L-1 KOH + 0.5 mol L-1 N2H4, NF, electrode area: 1 cm2 | [ |
Fig. 2. Developments and research status of electrocatalysts for HCD HER. (a) Bar chart of the numbers of articles published per year from 2018 to 2022 on HER (grey) and HCD HER (red). The data for HER were obtained by searching the keywords “(“hydrogen evolution”) OR (“hydrogen production”) OR (“water splitting”)” AND “(“electrocataly*”) OR (“electrochem*”)” from Web of Science. The data for HCD HER were obtained by adding ‘‘(“high current densit*”) OR (“large current densit*”) OR (“A cm?2”) OR (“1000 mA”)) OR (“1500 mA”) OR (“2000 mA”)” as the keywords. Note that the catalysts are not limited to TMDC materials in Fig. 2(a). (b) The red square symbol and line plots show the maximum current density reported in the articles published per year from 2019 to 2022 on TMDC electrocatalysts for HER in three-electrode cells with electrode area ≥ 1 cm2. The grey bars stand for the number of articles achieving HCD of 1000 mA cm?2 with electrode area ≥ 1 cm2. Details of state-of-the-art TMDC electrocatalysts for HCD HER reported from 2019 to 2022 are summarized in Table 1. The data in Fig. 2(b) and Table 1 were obtained by following two steps. First, we add “(“TMDC”) OR (“Transition metal *chalcogenide”) OR (“*chalcogenide”) OR (“*disulfide”)) OR (“MoS2”) OR (“WS2”)” as the keywords. Second, publications with required current density (1000 mA cm?2) and electrode area (≥ 1 cm2) were manually selected from searching results given by Web of Science.
Fig. 3. Two new criteria to evaluate catalyst performance under HCD conditions. (a) Rη/j defined as Δη/Δlog/j/ which can describe the reaction kinetics under large η. Here η stands for the overpotential and j stands for the current density. (b) Rη/j of HC-MoS2/Mo2C and Pt/C in a wide current range of 0?1000 mA cm?2. (c) Dv defined as $\frac{\overline{V_{1}}-\overline{V_{2}}}t$ or $\frac{\mathrm{j}_1-\mathrm{j}_2}t$. DA defined as $\frac{\overline{\mathrm{V}_1}-\overline{\mathrm{V}_2}}{\mathrm{t}\overline{\mathrm{V}_1}}$ or $\frac{\text{j}_1\overline{\mathrm{j}_2}}{\mathrm{t}\overline{\mathrm{j}_1}}$. Here t stands for the duration of the chronopotentiometry (CP) or the chronoamperometry (CA) test. V?1, V?2, j?1, and j?2 stand for the average of potentials in a CP test or current densities in a CA test during the initial/final 10% t. (d) Dv of RuMoNi electrocatalyst. The overpotential increase of a durable RuMoNi electrocatalyst after ten years’ operation is speculated to be 56 mV based on the DV.
Standard material | Catalyst | Electrolyte | η500 (mV) | η1000 (mV) | Ref. |
---|---|---|---|---|---|
Pt/C | Pt/C-nickel foam (NF) | 1 mol L‒1 KOH | 370 | 490 | [ |
Pt/C | 1 mol L‒1 KOH | 355 | 415 | [ | |
Pt/C-Cu foam | 1 mol L‒1 KOH | 400 | 450 | [ | |
Pt/C-NF | 1 mol L‒1 KOH | 281 | 444 | [ | |
Pt/C-Cu foam | 0.5 mol L‒1 H2SO4 | 340 | 400 | [ | |
Pt/C-Cu sheet | 0.5 mol L‒1 H2SO4 | 328 | 760 | [ | |
Pt foil | Pt foil | 1 mol L‒1 KOH | 570 | 822 | [ |
Pt foil | 1 mol L‒1 KOH | 500 | 640 | [ | |
Pt foil | 0.5 mol L‒1 H2SO4 | 270 | 435 | [ | |
Pt foil | 0.5 mol L‒1 H2SO4 | 380 | 660 | [ | |
Pt mesh | Pt mesh | 0.5 mol L‒1 H2SO4 | 560 | 958 | [ |
Pt wire | Pt wire | 1 mol L‒1 KOH | 310 | 388 | [ |
Pt wire | 0.5 mol L‒1 H2SO4 | 87 | 109 | [ |
Table 2 HER performance of Pt-based materials under HCD of 500 and 1000 mA cm?2.
Standard material | Catalyst | Electrolyte | η500 (mV) | η1000 (mV) | Ref. |
---|---|---|---|---|---|
Pt/C | Pt/C-nickel foam (NF) | 1 mol L‒1 KOH | 370 | 490 | [ |
Pt/C | 1 mol L‒1 KOH | 355 | 415 | [ | |
Pt/C-Cu foam | 1 mol L‒1 KOH | 400 | 450 | [ | |
Pt/C-NF | 1 mol L‒1 KOH | 281 | 444 | [ | |
Pt/C-Cu foam | 0.5 mol L‒1 H2SO4 | 340 | 400 | [ | |
Pt/C-Cu sheet | 0.5 mol L‒1 H2SO4 | 328 | 760 | [ | |
Pt foil | Pt foil | 1 mol L‒1 KOH | 570 | 822 | [ |
Pt foil | 1 mol L‒1 KOH | 500 | 640 | [ | |
Pt foil | 0.5 mol L‒1 H2SO4 | 270 | 435 | [ | |
Pt foil | 0.5 mol L‒1 H2SO4 | 380 | 660 | [ | |
Pt mesh | Pt mesh | 0.5 mol L‒1 H2SO4 | 560 | 958 | [ |
Pt wire | Pt wire | 1 mol L‒1 KOH | 310 | 388 | [ |
Pt wire | 0.5 mol L‒1 H2SO4 | 87 | 109 | [ |
Fig. 4. Schematics of the interfaces between the catalyst, substrate, electrolyte, and gas. (a) Schematics show the charge transfer process and Fb on the catalyst-substrate interface. (b) Schematics show the charge transfer and mass transfer processes on the catalyst-electrolyte interface. (c) Schematics show the mass transfer process and Fa on the catalyst-gas interface.
Fig. 5. Three interfaces (catalyst-substrate, catalyst-gas, and catalyst-electrolyte interfaces) and interface engineering strategies to manipulate the interface properties.
Fig. 6. Catalyst-substrate interface engineering. (a,b) Chevrel phase CuMo6S8 catalyst with strong interfacial binding force. Reprinted with permission from Ref. [57]. Copyright 2022, Springer Nature. (c?e) Pt alloy-CoP hybrids with tunable ΔΦ by electronic metal-support interaction. Reprinted with permission from Ref. [87]. Copyright 2021, Springer Nature. (f?h) Electronic property modulation of single-atom Pt on TMDCs. Reprinted with permission from Ref. [88]. Copyright 2021, Springer Nature.
Fig. 7. Catalyst-electrolyte interface engineering. (a?c) MoS2 nanostructured electrode with improved performance. Reprinted with permission from Ref. [93]. Copyright 2014, Wiley-VCH. (d?f) Ni3N@2M-MoS2 composite with two kinds of separated reaction sites. Reprinted with permission from Ref. [61]. Copyright 2022, Wiley-VCH. (g,h) Molybdate anion corrosion-resistant layer over the catalyst-electrolyte interface of the RuMoNi electrocatalyst repelling chlorine ions through electrostatic repulsive force. Reprinted with permission from Ref. [5]. Copyright 2023, Springer Nature.
Fig. 8. Catalyst-gas interface engineering. (a) Schematics for the forces on a single bubble adhering on the electrode surface. F1, F2, and F3 stand for the buoyancy force, the drag force from the flow of liquid past the electrode surface, and the interfacial tension force, respectively. θ stands for the contact angle. R stands for bubble radius. (b,c) Aerophobic PEI improves HER by promoting bubble detachment. Reprinted with permission from Ref. [123]. Copyright 2022, Wiley-VCH. (d?f) HER performance of mosaic Pt/PtS catalyst and other Pt catalysts. Reprinted with permission from Ref. [94]. Copyright 2021, Wiley-VCH. (g) Schematics for the current distribution, the direction of the Lorentz force (FL) in the left part, and the Lorentz-force-driven convection pattern, the so-called magnetohydrodynamic effect in the right part. Reprinted with permission from Ref. [124]. Copyright 2011, Elsevier Ltd. (h) Bubble detaching diameters with and without magnetic fields. (i) CA curves with and without magnetic fields. Reprinted with permission from Ref. [125]. Copyright 2019, Elsevier Ltd.
Interface | Catalyst | Interaction | Note | Ref. |
---|---|---|---|---|
Catalyst-substrate | CuMo6S8 | mechanical strength | strong interfacial binding force | [ |
MoS2(1‒x)Se2x/NiSe2 | chemical bonding between MoS2(1‒x)Se2x and NiSe2 | [ | ||
CoS2/rGO-CNT | entanglement of the flexible CNT | [ | ||
Ta-TaS2 | interfacial resistance | monolith electrode with almost zero interfacial resistance | [ | |
MoS2-MGF | interconnective highly conductive skeleton | [ | ||
Crumpled MoS2 | size and distribution of electrocatalyst | [ | ||
Pt alloy-CoP | electronic structure | tunable difference of work function between substrate and electrocatalyst | [ | |
Pt SACs-MoSe2 | electronic metal-support interaction modulating electronic structure of electrocatalyst | [ | ||
MoS2@Ni2P | heterostructure catalyst | generating new interfacial electronic state and enabling higher conductivity | [ | |
MoS2/Mo2C | increasing active sites and enhancing mass transfer ability | [ | ||
Catalyst-electrolyte | Micro-/ nanostructured CoS2 | micro-/ nanostructuring | accelerating the bubble detachment and maintaining the catalyst-electrolyte interface | [ |
Crumpled MoS2 | size and distribution of electrocatalyst | [ | ||
LSC/MoSe2 | interface chemistry | electron-rich surface with favorable intermediate adsorption energy | [ | |
Ni3N@2M-MoS2 | separated reaction sites to overcome the competitive adsorption of intermediates | [ | ||
Ni(OH)2/MoS2 | metal hydroxides as water dissociation promoters stimulating the process on the MoS2 edge sites | [ | ||
NiCo2S4/ReS2 | spin-crossover promoting water dissociation thermodynamically | [ | ||
RuMoNi | electrolyte engineering | corrosion-resistant layer formed by anion adsorption | [ | |
CoFePO-Ni foam | anion and cation doping in metal compounds promoting HER kinetics | [ | ||
Pd, Ru-MoS2‒xOHy | di-anionic MoS2 surface with OH and S improving the water dissociation kinetic | [ | ||
Catalyst-gas | edge-MoS2/CoS4@NFs | aerophobicity | aerophobicity by designing the electrode with micro-/nanostructures | [ |
MoS2@C supertubes | aerophobicity by making use of the confining effect from the tubular mesoporous graphite framework | [ | ||
PEI hydrogel-modified electrode | surface modification increasing the aerophobicity | [ | ||
Mosaic PtS | aerophobicity by engineering the active site distribution | [94] | ||
Ni-PTFE | external field | magnetic field facilitating bubble detachment | [ | |
Pt electrode | intensified effect of centrifugal force field on gas evolution | [ |
Table 3 Classification of the literature on catalyst-substrate, catalyst-electrolyte, and catalyst-gas interfaces respectively, based on the interface, catalyst, and effect.
Interface | Catalyst | Interaction | Note | Ref. |
---|---|---|---|---|
Catalyst-substrate | CuMo6S8 | mechanical strength | strong interfacial binding force | [ |
MoS2(1‒x)Se2x/NiSe2 | chemical bonding between MoS2(1‒x)Se2x and NiSe2 | [ | ||
CoS2/rGO-CNT | entanglement of the flexible CNT | [ | ||
Ta-TaS2 | interfacial resistance | monolith electrode with almost zero interfacial resistance | [ | |
MoS2-MGF | interconnective highly conductive skeleton | [ | ||
Crumpled MoS2 | size and distribution of electrocatalyst | [ | ||
Pt alloy-CoP | electronic structure | tunable difference of work function between substrate and electrocatalyst | [ | |
Pt SACs-MoSe2 | electronic metal-support interaction modulating electronic structure of electrocatalyst | [ | ||
MoS2@Ni2P | heterostructure catalyst | generating new interfacial electronic state and enabling higher conductivity | [ | |
MoS2/Mo2C | increasing active sites and enhancing mass transfer ability | [ | ||
Catalyst-electrolyte | Micro-/ nanostructured CoS2 | micro-/ nanostructuring | accelerating the bubble detachment and maintaining the catalyst-electrolyte interface | [ |
Crumpled MoS2 | size and distribution of electrocatalyst | [ | ||
LSC/MoSe2 | interface chemistry | electron-rich surface with favorable intermediate adsorption energy | [ | |
Ni3N@2M-MoS2 | separated reaction sites to overcome the competitive adsorption of intermediates | [ | ||
Ni(OH)2/MoS2 | metal hydroxides as water dissociation promoters stimulating the process on the MoS2 edge sites | [ | ||
NiCo2S4/ReS2 | spin-crossover promoting water dissociation thermodynamically | [ | ||
RuMoNi | electrolyte engineering | corrosion-resistant layer formed by anion adsorption | [ | |
CoFePO-Ni foam | anion and cation doping in metal compounds promoting HER kinetics | [ | ||
Pd, Ru-MoS2‒xOHy | di-anionic MoS2 surface with OH and S improving the water dissociation kinetic | [ | ||
Catalyst-gas | edge-MoS2/CoS4@NFs | aerophobicity | aerophobicity by designing the electrode with micro-/nanostructures | [ |
MoS2@C supertubes | aerophobicity by making use of the confining effect from the tubular mesoporous graphite framework | [ | ||
PEI hydrogel-modified electrode | surface modification increasing the aerophobicity | [ | ||
Mosaic PtS | aerophobicity by engineering the active site distribution | [94] | ||
Ni-PTFE | external field | magnetic field facilitating bubble detachment | [ | |
Pt electrode | intensified effect of centrifugal force field on gas evolution | [ |
Fig. 9. Perspectives for future developments in interface engineering, including the understanding of interfaces under HCD conditions, designing MEA interfaces in electrolyzer, and tuning interface properties in the industry-level electrolyzer. In the future, interface engineering will accelerate the industrialization of water electrolysis and contribute to the sustainable society.
|
[1] | 王毅, 王硕, 付云凡, 桑佳琪, 臧一鹏, 魏鹏飞, 李合肥, 汪国雄, 包信和. CuPc/FeNC双组分催化剂协同催化硝酸盐转化为氨[J]. 催化学报, 2024, 56(1): 104-113. |
[2] | 关志朋, 杨东锋, 刘钊, 朱书祥, 仲星星, 王华敏, 李向伟, 戚孝天, 易红, 雷爱文. 区域选择性地电化学氧化自由基参与的邻位-(4 + 2)/原位-(3 + 2)环化[J]. 催化学报, 2023, 52(9): 144-153. |
[3] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[4] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[5] | 刘丹卿, 张丙兴, 赵国强, 陈建, 潘洪革, 孙文平. 原位电化学扫描探针显微镜技术在电催化领域的应用进展[J]. 催化学报, 2023, 47(4): 93-120. |
[6] | 周鹤洋, 唐海涛, 何卫民. 有机电化学-电流驱动未来[J]. 催化学报, 2023, 46(3): 4-10. |
[7] | 郑建云, 吕艳红, 黄爱彬, 曹逊, 蒋三平, 王双印. 解析光电化学氮还原合成氨中局域电子结构和合金化的协同效应[J]. 催化学报, 2023, 45(2): 141-151. |
[8] | 詹昊霖, 纪丽菲, 曹烁晖, 冯烨, 姜艳霞, 黄玉清, 孙世刚, 陈忠. 电化学与空间层选核磁共振波谱联用原位监测多碳醇氧化[J]. 催化学报, 2023, 53(10): 171-179. |
[9] | 付先彪. 关于电还原硝酸根反应的思考[J]. 催化学报, 2023, 53(10): 8-12. |
[10] | 乔玉彦, 潘艳秋, 张江威, 王彬, 武婷婷, 范文俊, 曹雨程, Rashid Mehmood, 张飞, 章福祥. 多碳界面工程用于促进NiFe纳米复合电催化剂的产氧反应[J]. 催化学报, 2022, 43(9): 2354-2362. |
[11] | 张纹, 田梦, 焦海淼, 蒋海英, 唐军旺. 高匹配的BiVO4/WO3纳米碗异质结光阳极用于高效光电化学分解水[J]. 催化学报, 2022, 43(9): 2321-2331. |
[12] | 李志伟, 黄辉庭, 罗文俊, 胡颖飞, 范容莉, 朱治, 王骏, 冯建勇, 李朝升, 邹志刚. 电化学处理构建表面电荷传输通道用于高效光电催化分解水[J]. 催化学报, 2022, 43(9): 2342-2353. |
[13] | 崔彤, 翟雪君, 郭莉莉, 迟京起, 张昱, 朱家伟, 孙雪梅, 王磊. 自组装百合花状超低Ru, Ni掺杂的Fe2O3用于大电流碱性海水电解双功能电催化[J]. 催化学报, 2022, 43(8): 2202-2211. |
[14] | 王立群, 闫啸, 司文平, 刘道兰, 侯兴刚, 李德军, 侯峰, 窦世学, 梁骥. 光电化学氮还原: 一种可持续的氨合成方法[J]. 催化学报, 2022, 43(7): 1761-1773. |
[15] | 刘聪, 梅轩豪, 韩策, 宫雪, 宋平, 徐维林. 二氧化碳电还原催化剂调控策略与结构效应[J]. 催化学报, 2022, 43(7): 1618-1633. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||