催化学报 ›› 2024, Vol. 56: 9-24.DOI: 10.1016/S1872-2067(23)64571-1

• 视角 • 上一篇    下一篇

大电流密度过渡金属硫族化合物析氢催化剂界面工程展望

康馨,1, 余强敏,1, 张天昊, 胡书萁, 刘鹤鸣, 张致远, 刘碧录*()   

  1. 清华大学深圳国际研究生院, 清华-伯克利深圳学院&材料研究院, 深圳盖姆石墨烯中心, 广东深圳518055
  • 收稿日期:2023-10-01 接受日期:2023-11-16 出版日期:2024-01-18 发布日期:2024-01-10
  • 通讯作者: *电子信箱: bilu.liu@sz.tsinghua.edu.cn (刘碧录).
  • 作者简介:1共同第一作者.
  • 基金资助:
    国家杰出青年科学基金项目(52125309);国家自然科学基金(52188101);国家自然科学基金(52303375);广东省基础与应用基础研究基金项目(2022B1515120004);广东创新创业研究团队项目(2017ZT07C341);深圳市基础研究项目(WDZC20220812141108001);深圳鹏瑞基金会清华深圳国际研究生院深圳鹏瑞青年教师项目(SZPR2023002)

A perspective on interface engineering of transition metal dichalcogenides for high-current-density hydrogen evolution

Xin Kang,1, Qiangmin Yu,1, Tianhao Zhang, Shuqi Hu, Heming Liu, Zhiyuan Zhang, Bilu Liu*()   

  1. Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China
  • Received:2023-10-01 Accepted:2023-11-16 Online:2024-01-18 Published:2024-01-10
  • Contact: *E-mail: bilu.liu@sz.tsinghua.edu.cn (B. Liu).
  • About author:Bilu Liu is a full professor and principal investigator at Tsinghua Shenzhen International Graduate School (Tsinghua SIGS), Tsinghua University, China. He received his bachelor’s degree in materials chemistry from the University of Science and Technology of China (USTC) in 2006, and PhD degree in materials science from the Institute of Metal Research, Chinese Academy of Sciences (IMR, CAS) in 2012. His research interests cover the chemistry and materials science of low-dimensional materials with emphasis on carbon nanostructures, two-dimensional materials, and their heterostructures. His work relates to the growth mechanism investigation, controlled mass production of these materials and their applications in energy, electronics, optoelectronics, and sensing.
    First author contact:1Contributed equally to this work.
  • Supported by:
    National Science Foundation of China for Distinguished Young Scholars(52125309);National Natural Science Foundation of China(52188101);National Natural Science Foundation of China(52303375);Guangdong Basic and Applied Basic Research Foundation(2022B1515120004);Guangdong Innovative and Entrepreneurial Research Team Program(2017ZT07C341);Shenzhen Basic Research Project(WDZC20220812141108001);Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation(SZPR2023002)

摘要:

氢能是未来可持续社会中理想的能量载体, 利用可再生能源电解水制取绿氢的技术受到研究人员的广泛关注. 电解水制绿氢技术由实验室向工业应用跨越的前提是发展大电流密度下性能优异且稳定的电催化剂. 析氢反应(HER)是一种非均相反应, 涉及催化剂-基底、催化剂-电解液、催化剂-气体三个界面. 界面性质会影响电化学传质行为、电荷传输行为和催化剂的力学性质, 从而影响大电流密度下制氢性能. 因此, 优化界面结构和性质是提升大电流密度下电解水催化剂性能并解决电解水技术工业应用挑战的关键.

二维过渡金属硫族化合物(TMDCs)具有电子结构可调、活性位点丰富、合成方法多样等优势, 自1976年首次应用于光电催化水分解反应、加氢脱硫反应以来, 已有大量工作报道了TMDCs催化剂应用于HER. 本文以TMDCs催化剂为例研究界面工程对大电流密度下HER的提升作用及机制. 探讨了电化学反应中上述三个界面上发生的物理化学过程, 系统分析了大电流密度下质量传输、电荷传输速率受限和力学强度不足三方面挑战, 并总结了适用于大电流密度的催化剂性能描述符. 分别归纳了针对以上三个界面的界面工程策略及相应作用, 简要概括为: (1) 催化剂-基底界面结合力增强、界面电阻降低、界面电子结构调控等策略; (2) 催化剂-电解液界面形貌调控、表面化学、电解液环境调控等策略; (3) 催化剂-气体界面疏气性调控、外场作用等策略. 从反应机理研究、膜电极界面设计及电解槽界面性质调控三个角度对电解水反应界面工程未来的发展与应用提出了建议及展望. 在反应机理方面, 大电流条件下的界面性质如界面电阻、传质行为等仍需更深入的认识. 在膜电极中, 催化剂、离子交换膜、离子型聚合物、气体扩散层所形成的多元界面, 尤其是催化剂-膜界面、催化剂-气体扩散层界面的结构仍需进一步优化以提升膜电极的活性及稳定性. 在电解槽界面性质调控方面, 催化剂-基底界面结合力等参数与催化剂寿命间的关系, 电解过程中界面处的温度场及流场分布, 适配于实际生产系统的电流密度等仍需深入研究.

综上, 本文从基本物理化学过程、策略及作用、挑战与展望等多个方面介绍了界面工程. 本文有助于研究人员理解非均相电化学反应过程中界面的重要作用, 提出催化剂、膜电极、电解槽界面设计新策略, 并开发新型表征方法以深入对界面性质的认识, 推动高效电解水技术的开发及应用.

关键词: 界面工程, 电化学, 制氢反应, 大电流, 过渡金属硫族化合物, 膜电极

Abstract:

abstract: Water electrolysis for green hydrogen production is important for the global carbon neutrality. The industrialization of this technology requires efficient and durable electrocatalysts under high-current-density (HCD) operations. However, the insufficient mass and charge transfer at the various interfaces lead to unsatisfactory HCD activity and durability. Interface engineering is important for designing efficient HCD electrocatalysts. In this perspective, we analyze the processes taking place at three interfaces including the catalyst-substrate, catalyst-electrolyte, and catalyst-gas interfaces, and reveal the correlations between interface interactions and the challenges for HCD electrolysis. We then highlight the development of HCD electrocatalysts that focus on interface engineering using the example of transition metal dichalcogenide based catalysts, which have attracted widespread interests in recent years. Finally, we give an outlook on the development of interface engineering for the industrialization of water electrolysis technology.

Key words: Interface engineering, Electrochemistry, Hydrogen production, High-current-density, Transition metal, dichalcogenides (TMDCs), Membrane electrode assembly