催化学报 ›› 2023, Vol. 47: 93-120.DOI: 10.1016/S1872-2067(23)64396-7

• 综述 • 上一篇    下一篇

原位电化学扫描探针显微镜技术在电催化领域的应用进展

刘丹卿a, 张丙兴a, 赵国强a, 陈建b, 潘洪革a,b, 孙文平a,c,*()   

  1. a浙江大学材料科学与工程学院, 浙江杭州310058
    b西安工业大学新能源科学与技术研究院, 陕西西安710021
    c浙江大学能源清洁利用国家重点实验室, 浙江杭州310027
  • 收稿日期:2022-11-26 接受日期:2023-01-10 出版日期:2023-04-18 发布日期:2023-03-20
  • 通讯作者: *电子信箱: wenpingsun@zju.edu.cn (孙文平).
  • 基金资助:
    国家重大研究和发展项目(2202YFB4002503);浙江省自然科学基金(LZ22B030006);国家自然科学基金(52171224);中国博士后委员会办公室(YJ20200165)

Advanced in-situ electrochemical scanning probe microscopies in electrocatalysis

Dan-Qing Liua, Bingxing Zhanga, Guoqiang Zhaoa, Jian Chenb, Hongge Pana,b, Wenping Suna,c,*()   

  1. aSchool of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
    bInstitute of Science and Technology for New Energy, Xi'an Technological University, Xi'an 710021, Shaanxi, China
    cState Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2022-11-26 Accepted:2023-01-10 Online:2023-04-18 Published:2023-03-20
  • Contact: *E-mail: wenpingsun@zju.edu.cn (W. Sun).
  • About author:Wenping Sun is a professor at School of Materials Science and Engineering, Zhejiang University. He received his B.S. degree in 2008 and Ph.D. degree in 2013 in Materials Science from the University of Science and Technology of China (USTC). His research expertise includes electrocatalysis, fuel cells, and batteries, especially the design of novel materials and structures, and fundamental understandings of related electrochemical processes.
  • Supported by:
    National Key Research and Development Program of China(2202YFB4002503);Natural Science Foundation of Zhejiang Province(LZ22B030006);National Natural Science Foundation of China(52171224);Office of China Postdoc Council(YJ20200165)

摘要:

在电化学界面, 电催化过程通常包括电子转移、吸附和脱附、静电相互作用、溶剂化及去溶剂化等多步过程, 深入理解电催化反应机理极具挑战性. 对纳米结构电化学界面(电极)处电催化过程的深入理解十分有助于阐明电催化反应机理和设计高性能电催化剂材料. 电催化活性通常与电催化剂表面局域化的活性位点密切有关. 在反应条件下, 电催化反应过程的研究极大依赖于高分辨表征技术. 经典的宏观电化学表征方法仅可以提供不同界面位点的平均信息, 很难分辨一些特殊结构位点(如缺陷、晶界、边缘位点)的相关重要电化学信息. 原位电化学扫描探针显微镜技术, 包括电化学扫描隧道显微镜(EC-STM)、电化学原子力显微镜(EC-AFM)、扫描电化学显微镜(SECM)及扫描电化学池显微镜(SECCM), 能够在纳米及原子尺度研究电催化反应过程, 弥补了宏观表征方法的不足, 为探究构效关系和解析电催化反应机理提供了机遇.

本文介绍了各种扫描显微技术的基本原理、特点及优劣势, 并且概述了各项技术在电催化领域研究的重大进展. EC-STM和EC-AFM能够原位表征电催化过程中的纳米尺度表面结构演变及吸附/脱附过程, 但无法直接测量局部电化学活性(法拉第电流). 通过SECM和SECCM可以检测微区电化学信号, 并获得电化学通量和电化学反应动力学信息, 可作为EC-STM和EC-AFM的补充技术. 结合二者的优势, 进一步介绍了双探针结合技术(SECM-AFM, SECM-STM, SECM-SICM及SECM-SECCM)的原理和关键电催化应用. 随后, 从揭示构效关系、结构演变/稳定性、反应物或中间物的吸附、反应路径和选择性等角度, 总结了这些原位电化学扫描探针显微镜技术在电催化领域(析氢反应、氢氧化反应、析氧反应、氧还原反应及CO2还原反应)的最新研究进展. 最后, 对原位电化学扫描探针显微镜技术在电催化领域研究的挑战及未来发展进行了展望.

关键词: 电化学扫描探针显微镜, 电催化, 反应机理, 构效关系, 界面

Abstract:

Electrocatalysis is critical in improving the energy conversion efficiency, decreasing carbon emissions, and promoting the development of the green energy industry. A deep understanding of the electrocatalytic processes at nanostructured electrochemical interfaces (electrodes) is required to elucidate the electrocatalytic mechanism and facilitate the rational design of electrocatalysts. Electrocatalytic surfaces, which are structurally and compositionally heterogeneous, are usually analyzed using classical macroscopic electrochemical methods that lack the high spatial resolution and temporal sensitivity required for localized electrochemical measurements. In this regard, advances in electrochemical scanning probe microscopy, including electrochemical scanning tunneling, electrochemical atomic force, scanning electrochemical, and scanning electrochemical cell microscopies, offer significant opportunities to study electrocatalytic phenomena at nanometer and ultimately atomic scales during the reaction process. In this review, we first introduce the basic principles, features, and advantages and disadvantages of each technique of these scanning probe microscopies and outline the key advancements of each technique, particularly in investigating electrocatalysis. Subsequently, hybrid techniques of probe microscopy with synergistic effects are introduced. Then, we summarize the recent progress in the application of in-situ characterization methods in electrocatalysis, including hydrogen evolution/oxidation, oxygen evolution, and CO2 reduction reactions, focusing on the structure-activity correlation, structure evolution/stability, adsorption of the reactants or intermediates, preferred reaction pathways, and selectivity. Finally, the challenges and future developments of in-situ scanning probe microscopy in electrocatalysis are discussed.

Key words: Electrochemical scanning probe, microscopies, Electrocatalysis, Reaction mechanism, Structure-activity relationship, Interface