催化学报 ›› 2024, Vol. 56: 25-50.DOI: 10.1016/S1872-2067(23)64576-0

• 综述 • 上一篇    下一篇

用于氨电氧化反应生成硝酸盐/亚硝酸盐的金属基电催化剂:过去、现在和未来

田芸睿a, 谭皓天a, 李霞a, 贾晶晶a, 毛子贤a, 刘健b, 梁骥a,*()   

  1. a天津大学材料科学与工程学院, 先进陶瓷与机械加工技术教育部重点实验室, 天津300350
    b内蒙古大学化学化工学院, 内蒙古呼和浩特010021
  • 收稿日期:2023-08-29 接受日期:2023-11-24 出版日期:2024-01-18 发布日期:2024-01-10
  • 通讯作者: *电子信箱: liangji@tju.edu.cn (梁骥).
  • 基金资助:
    国家自然科学基金(22179093);国家自然科学基金(21905202)

Metal-based electrocatalysts for ammonia electro-oxidation reaction to nitrate/nitrite: Past, present, and future

Yunrui Tiana, Haotian Tana, Xia Lia, Jingjing Jiaa, Zixian Maoa, Jian Liub, Ji Lianga,*()   

  1. aKey Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
    bCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, Inner Mongolia, China
  • Received:2023-08-29 Accepted:2023-11-24 Online:2024-01-18 Published:2024-01-10
  • About author:Prof. Ji Liang received his Ph.D. degree from the University of Adelaide in 2014. After a T. S. Ke Fellowship and an ARC DECRA fellowship, he joined the School of Materials Science and Engineering, Tianjin University. His research interests are the design of functional carbon-based materials for electrochemical catalysis and energy storage applications.
  • Supported by:
    National Natural Science Foundation of China(22179093);National Natural Science Foundation of China(21905202)

摘要:

亚硝酸盐和硝酸盐(统称为NO2/3)是工业、农业和食品工程中的重要物质. 目前通过Ostwald氧化法制备亚硝酸盐和硝酸盐过程常常伴随着大量的能源消耗和温室气体排放. 氨的电催化氧化是一种低排放和节能的低温工艺过程, 可以持续生产NO2/3, 避免了有害的N2O的形成, 并且可以完全由可再生电力供电. 目前对氨氧化反应的研究大多集中在氨裂解制氢和直接氨燃料电池上, 而对氨转化为NO2/3的研究关注较少. 因此, 本文在总结近年来氨电催化工作的基础上, 对催化剂的反应机理和设计思路进行了综述.

本文从电催化氨氧化反应(AOR)可能的反应机理入手, 介绍了AOR的反应条件、检测方法、原位表征方法以及理论计算的研究成果, 在总结了影响AOR催化剂催化性能因素的基础上提出了近年来电催化剂的设计策略以及合成方法, 并对未来氨领域的发展提出展望. 首先, 基于反应原理以及反应中间体的吸附路径等方面讨论了AOR的关键难点. 然后, 系统性总结了AOR的测试要求以及原位拉曼、原位红外、原位电化学质谱和原位X射线吸收光谱等技术在AOR机理研究中的重要作用, 讨论了密度泛函理论对于研究AOR催化过程中的反应能垒和催化剂电子轨道分布的贡献. 催化剂合金设计、界面工程、非晶化处理、单原子或双原子调制等可控策略有助于抑制副反应的进行以及电解过程中产生的腐蚀性物质对电极的破坏. 最后, 介绍了氨氧化在光、热以及生物催化领域的应用进展, 提出了当前AOR所面临的挑战和解决策略, 如将先进的材料设计与理论计算相结合, 有助于寻找新的高性能AOR电催化剂. 催化体系的改进和反应器的优化将加速大规模绿色、高效、低能耗电催化制备NO2/3的产业化.

综上所述, AOR领域取得的进展说明氨电氧化制备NO2/3用于工业生产具有可行性, 这为满足不断增长的NO2/3供应需求带来了新的机遇. 尽管AOR仍面临性能不高、工艺不成熟等难题, 但随着理论与实验研究的结合, 原位表征技术不断地开发利用, 未来高效、稳定的AOR催化剂会不断的出现. 本文也为生成NO2/3的催化剂的研发提供理论参考.

关键词: 氨氧化反应, 硝酸盐, 亚硝酸盐, 非贵金属催化剂,

Abstract:

abstract: Electrocatalytic oxidation of ammonia is an appealing, low-temperature process for the sustainable production of nitrites/nitrates that avoids the formation of pernicious N2O and can be fully powered by renewable electricity. However, the number of known efficient catalysts for this purpose is limited. In this review, based on the possible reaction mechanism of electrocatalytic ammonia oxidation reaction (AOR), the control of catalyst performance by hybrid composite design, microstructure construction, and surface modification is reviewed, and the prospects of AOR catalysts for photocatalysis, thermocatalysis, and biocatalysis are proposed. Notably, a rational and rigorous AOR experimental protocol is suggested. We hope that the research community will jointly focus on the sensible testing of AOR products and eventually develop a more realistic evaluation system. Finally, a techno-economic analysis of AOR electrocatalysis was carried out, and a more economical carbon-free cycle system based on the AOR process was proposed.

Key words: Ammonia oxidation reaction, Nitrite, Nitrate, Non-noble metal catalyst, Ammonia