催化学报 ›› 2024, Vol. 56: 25-50.DOI: 10.1016/S1872-2067(23)64576-0
田芸睿a, 谭皓天a, 李霞a, 贾晶晶a, 毛子贤a, 刘健b, 梁骥a,*()
收稿日期:
2023-08-29
接受日期:
2023-11-24
出版日期:
2024-01-18
发布日期:
2024-01-10
通讯作者:
*电子信箱: liangji@tju.edu.cn (梁骥).
基金资助:
Yunrui Tiana, Haotian Tana, Xia Lia, Jingjing Jiaa, Zixian Maoa, Jian Liub, Ji Lianga,*()
Received:
2023-08-29
Accepted:
2023-11-24
Online:
2024-01-18
Published:
2024-01-10
About author:
Prof. Ji Liang received his Ph.D. degree from the University of Adelaide in 2014. After a T. S. Ke Fellowship and an ARC DECRA fellowship, he joined the School of Materials Science and Engineering, Tianjin University. His research interests are the design of functional carbon-based materials for electrochemical catalysis and energy storage applications.
Supported by:
摘要:
亚硝酸盐和硝酸盐(统称为NO2/3−)是工业、农业和食品工程中的重要物质. 目前通过Ostwald氧化法制备亚硝酸盐和硝酸盐过程常常伴随着大量的能源消耗和温室气体排放. 氨的电催化氧化是一种低排放和节能的低温工艺过程, 可以持续生产NO2/3−, 避免了有害的N2O的形成, 并且可以完全由可再生电力供电. 目前对氨氧化反应的研究大多集中在氨裂解制氢和直接氨燃料电池上, 而对氨转化为NO2/3−的研究关注较少. 因此, 本文在总结近年来氨电催化工作的基础上, 对催化剂的反应机理和设计思路进行了综述.
本文从电催化氨氧化反应(AOR)可能的反应机理入手, 介绍了AOR的反应条件、检测方法、原位表征方法以及理论计算的研究成果, 在总结了影响AOR催化剂催化性能因素的基础上提出了近年来电催化剂的设计策略以及合成方法, 并对未来氨领域的发展提出展望. 首先, 基于反应原理以及反应中间体的吸附路径等方面讨论了AOR的关键难点. 然后, 系统性总结了AOR的测试要求以及原位拉曼、原位红外、原位电化学质谱和原位X射线吸收光谱等技术在AOR机理研究中的重要作用, 讨论了密度泛函理论对于研究AOR催化过程中的反应能垒和催化剂电子轨道分布的贡献. 催化剂合金设计、界面工程、非晶化处理、单原子或双原子调制等可控策略有助于抑制副反应的进行以及电解过程中产生的腐蚀性物质对电极的破坏. 最后, 介绍了氨氧化在光、热以及生物催化领域的应用进展, 提出了当前AOR所面临的挑战和解决策略, 如将先进的材料设计与理论计算相结合, 有助于寻找新的高性能AOR电催化剂. 催化体系的改进和反应器的优化将加速大规模绿色、高效、低能耗电催化制备NO2/3−的产业化.
综上所述, AOR领域取得的进展说明氨电氧化制备NO2/3−用于工业生产具有可行性, 这为满足不断增长的NO2/3−供应需求带来了新的机遇. 尽管AOR仍面临性能不高、工艺不成熟等难题, 但随着理论与实验研究的结合, 原位表征技术不断地开发利用, 未来高效、稳定的AOR催化剂会不断的出现. 本文也为生成NO2/3−的催化剂的研发提供理论参考.
田芸睿, 谭皓天, 李霞, 贾晶晶, 毛子贤, 刘健, 梁骥. 用于氨电氧化反应生成硝酸盐/亚硝酸盐的金属基电催化剂:过去、现在和未来[J]. 催化学报, 2024, 56: 25-50.
Yunrui Tian, Haotian Tan, Xia Li, Jingjing Jia, Zixian Mao, Jian Liu, Ji Liang. Metal-based electrocatalysts for ammonia electro-oxidation reaction to nitrate/nitrite: Past, present, and future[J]. Chinese Journal of Catalysis, 2024, 56: 25-50.
Fig. 7. (a) Schematic illustration of the AOR reaction mechanism. CV measurement with 1 mol L?1 KOH (b) and 1 mol L?1 KOH + 0.5 mol L?1 NH4OH (c) electrolyte. Schematic representation of two proposed pathways for the copper-catalyzed AOR. Reprinted with permission from Ref. [32]. Copyright 2023, Elsevier Ltd.
Fig. 8. (a) Homogeneous electrocatalytic (mediated) oxidation, where the primary product is NO2-. (b) Direct heterogeneous electrocatalytic oxidation of NH3, where the primary product is NO3-. Reprinted with permission from Ref. [2]. Copyright 2021, Wiley-VCH.
Fig. 11. Top: Free energy diagrams of NO3? formation from ammonia via Nads (a) and NHOHads (b) intermediates at equilibrium (red trace) and limiting (blue trace) potentials computed using the computational hydrogen electrode at pH 11. (c) Bottom, top and side views of the lowest energy configurations for AOR intermediates in the path toward NO3?; Reprinted with permission from Ref. [46]. Copyright 2021, Wiley-VCH.
Fig. 12. (a) CV for NiCuBO/NF at 5 mV s?1. (b) In-situ electrochemical Raman spectra during forward scan from low to high potential. (c) From high to low potential for NiCuBO/NF. Reprinted with permission from Ref. [49]. Copyright 2023, Elsevier Ltd. (d) Cyclic voltammograms collected on the Ir film electrode. (e) ATR-SEIRA spectra obtained on Ir surface as applied potential positive scanning from 0 to 1.2?V, taken the single-beam spectrum at 1.2? and 0 V as the reference spectrum, respectively. (f) Potential-dependent intensity variation of Ir-Hads, N2Hx+y,ads, NOads, NO2? and NO3?; Reprinted with permission from Ref. [52]. Copyright 2021, Elsevier Ltd.
Electrode | pH | Potential (V vs. RHE) | Current density (mA cm-2) | Net yield reaction rate (mmol L-1 h-1 cm-2) | NO2- selectivity (%) | Ref. |
---|---|---|---|---|---|---|
Ru-Ir/TiO2 | 6.5 | — | 9 | — | 1 | [ |
Ni(OH)2 | 13 | 1.51 | — | — | 26.4 | [ |
Ni/Ni(OH)2 | 11 | — | 20 | 0.14 | 47 | [ |
Ni(OH)2/Ni | 11 | 1.64 | — | — | 80 | [ |
Table 1 Comparing ammonia electrochemical oxidation rates.
Electrode | pH | Potential (V vs. RHE) | Current density (mA cm-2) | Net yield reaction rate (mmol L-1 h-1 cm-2) | NO2- selectivity (%) | Ref. |
---|---|---|---|---|---|---|
Ru-Ir/TiO2 | 6.5 | — | 9 | — | 1 | [ |
Ni(OH)2 | 13 | 1.51 | — | — | 26.4 | [ |
Ni/Ni(OH)2 | 11 | — | 20 | 0.14 | 47 | [ |
Ni(OH)2/Ni | 11 | 1.64 | — | — | 80 | [ |
Fig. 14. Percentage of Pt(111) and Pt(100) sites for Typea, b, and c nanoparticles and ammonia oxidation on Pt nanoparticles of type c (solidline), type b (dashed line), and type a (dotted line) in 0.2 mol L?1 NaOH and 0.1 mol L?1 NH3. The sweep rate is 10 mV s?1. Reprinted with permission from Ref. [56]. Copyright 2004, American Chemical Society.
Fig. 15. SEM images of the surface morphologies of Pt particles electrodeposited on the ITO substrates at current densities of 0.2 (a), 0.5 (b), 1 (c) mA cm?2. Reprinted with permission from Ref. [57]. Copyright 2012, Elsevier Ltd.
Electrocatalyst | Carrier material | Ref. |
---|---|---|
CNT/NCNT@MOF | carbon paper | [ |
1-Cu’ | carbon paper | [ |
CuO-Cu2O | glassy carbon | [ |
Pt/glassy carbon | nickel foam | [ |
Ni(OH)2-decorated Pt NCs/C | glassy carbon | [ |
(Mn, Fe, Co, Ni, Cu)3O4 | carbon fiber paper | [ |
NiCo2N | carbon fiber paper | [ |
Table 2 Summarize the exemplary results as well as the catalytic performance of different electrocatalyst substrates in the literature.
Electrocatalyst | Carrier material | Ref. |
---|---|---|
CNT/NCNT@MOF | carbon paper | [ |
1-Cu’ | carbon paper | [ |
CuO-Cu2O | glassy carbon | [ |
Pt/glassy carbon | nickel foam | [ |
Ni(OH)2-decorated Pt NCs/C | glassy carbon | [ |
(Mn, Fe, Co, Ni, Cu)3O4 | carbon fiber paper | [ |
NiCo2N | carbon fiber paper | [ |
Fig. 16. STEM images of the NiCu/CP electrode before (a) and after (b) ammonia electrolysis tests. (c) The LSVs data of NiCu anode and Pt/C anode. Reprinted with permission from Ref. [41]. Copyright 2018, Elsevier Ltd. (d) CV curves in Ar-saturated 0.1 mol L?1 NH3 + 1.0 mol L?1 KOH at 5 mV s?1 (inset is TEM images and corresponding 3D models of PtIrCu HCOND). Reprinted with permission from Ref. [18]. Copyright 2021, Elsevier Ltd.
Fig. 17. SEM (a) and TEM (b) images of Cu@Pt/PGE at various magnifications. Reprinted with permission from Ref. [73]. Copyright 2021, The Royal Society of Chemistry. (c) Schematic of Ni(OH)2-Cu2O@CuO with dual-interface structure. Reprinted with permission from Ref. [61]. Copyright 2020, American Chemical Society.
Fig. 18. (a) HRTEM image of Ni(OH)2-Cu2O@CuO. (b) CVs of Ni(OH)2-Cu2O@CuO acquired. Reprinted with permission from Ref. [61]. Copyright 2020, American Chemical Society.
Fig. 19. (a) A schematic illustration of selective NH3-to-N2 oxidation over Cu/NCNT via the i-SCR mechanism. (b) XPS Cu 2p3/2 spectra for Cu/NCNT catalysts with different surface N contents (Cu 2 wt% for all the catalysts). (c) Concentrations of the reactants and products in NH3-SCO over Cu/NCNT with different concentrations of NO in the reaction mixture at 120 °C. Reprinted with permission from Ref. [77]. Copyright 2022, American Chemical Society.
Fig. 20. (a) HRTEM images of Ce-NR. (b) NH3-TPD profiles of the as-synthesized catalysts. (c) Corresponding peak intensity ratios of I1226/I1117 and the amounts of relevant desorbed-NH3 species (peak β + γ) over the Cu/Ce-NR and Cu/Ce-NC catalysts. Reprinted with permission from Ref. [81]. Copyright 2023, American Chemical Society.
Fig. 21. (a) CV curves at the potential range from 0 to 0.6 V vs. Hg/HgO. (b) Atomic structures of CuO with oxygen vacancies. (c) Free energy diagrams of oxidation on the Vo-free and Vo-rich CuO(111) surface. Reprinted with permission from Ref. [42].Copyright 2022, Springer-Verlag.
Fig. 22. (a) Preparation and evolution of the host-guest Cu catalyst through metal ion deposition and in situ clustering routes. (b) In situ XANES. (c) FE-EXAFS at the Cu K-edge for 1-Cu. Reprinted with permission from Ref. [27] Copyright 2022, American Chemical Society.
Electrocatalyst | Structural characteristics | Test environment | Performancea (Peak current density) | Ref. |
---|---|---|---|---|
Pt-Rh/carbon fiber | continuous Pt-Rh layer on carbon fibers | 1.03 mmol L-1 NH3 + 0.1 mol L-1 KOH | 15 mA cm-2 (10 mV s-1) | [ [ |
Pt/graphite | Pt layer consisting of aggregates | 0.1 mol L-1 NH3 + 0.2 mol L-1 NaOH | 32 mA (20 mV s-1) | |
Pt/Ni | submicron-sized Pt particles | 0.1 mol L-1 NH3 + 0.2 mol L-1 NaOH | 1 mA cm-2 (5 mV s-1) | [ |
Pt/glassy carbon | Pt nanoparticles/Pt nanosheetsata | 0.075-1.5mmol L-1 NH3 + 1 mol L-1 KOH | 4.6 mA (10 mV s-1) | [ |
Pt-Ir/Pt or Au | Fcc Pt70Ir30 alloy | 0.005 mmol L-1 NH3 + 0.1 mmol L-1 KOH | 25mA cm-2 (10 mV s-1) | [ |
Pt black | Pt film | 0.1 mol L-1 NH3+1 mol L-1 NaClO4 | 22.5 mA (5 mV s-1) | [ |
Pt | coral-like Pt nanowires | 0.05 mol L-1 (NH4)2SO4 + 1 mol L-1 KOH | 72 mA cm-2 (10 mV s-1) | [ |
NiCu@NiCuOOH | core-shell NiCu@NiCuOOH | 0.5 mol L-1 NaOH + 0.015 mol L-1 NH4Cl | — | [ |
NiCu-S/DSA | particulate metal oxides | 0.5 mol L-1 NaOH + 0.015 mol L-1 NH4Cl | — | [ |
Table 3 Summarizes the exemplary results of electrodeposition in the literature for the preparation of electrocatalysts, as well as their structural features and catalytic performance.
Electrocatalyst | Structural characteristics | Test environment | Performancea (Peak current density) | Ref. |
---|---|---|---|---|
Pt-Rh/carbon fiber | continuous Pt-Rh layer on carbon fibers | 1.03 mmol L-1 NH3 + 0.1 mol L-1 KOH | 15 mA cm-2 (10 mV s-1) | [ [ |
Pt/graphite | Pt layer consisting of aggregates | 0.1 mol L-1 NH3 + 0.2 mol L-1 NaOH | 32 mA (20 mV s-1) | |
Pt/Ni | submicron-sized Pt particles | 0.1 mol L-1 NH3 + 0.2 mol L-1 NaOH | 1 mA cm-2 (5 mV s-1) | [ |
Pt/glassy carbon | Pt nanoparticles/Pt nanosheetsata | 0.075-1.5mmol L-1 NH3 + 1 mol L-1 KOH | 4.6 mA (10 mV s-1) | [ |
Pt-Ir/Pt or Au | Fcc Pt70Ir30 alloy | 0.005 mmol L-1 NH3 + 0.1 mmol L-1 KOH | 25mA cm-2 (10 mV s-1) | [ |
Pt black | Pt film | 0.1 mol L-1 NH3+1 mol L-1 NaClO4 | 22.5 mA (5 mV s-1) | [ |
Pt | coral-like Pt nanowires | 0.05 mol L-1 (NH4)2SO4 + 1 mol L-1 KOH | 72 mA cm-2 (10 mV s-1) | [ |
NiCu@NiCuOOH | core-shell NiCu@NiCuOOH | 0.5 mol L-1 NaOH + 0.015 mol L-1 NH4Cl | — | [ |
NiCu-S/DSA | particulate metal oxides | 0.5 mol L-1 NaOH + 0.015 mol L-1 NH4Cl | — | [ |
Fig. 23. Schematic illustration of Pt NPs morphology variations depends on EL of 0.05, ?0.2, ?0.35, and ?0.5 V. Reprinted with permission from Ref. [98]. Copyright 2023, Elsevier Ltd.
Fig. 24. (a) The formation diagram of NiCu@NiCuOOH-NF core-shell electrode. (b) SEM images of NiCu@NiCuOOH-NF. (c) The comparison of i-t curves at 0.6 V vs. SCE between 2 mol L?1 NaOH + 0.4 NH4Cl and 2 mol L?1 NaOH. Reprinted with permission from Ref. [99]. Copyright 2022, Elsevier Ltd.
Fig. 25. (a) Magnified TEM image. (b) Size distribution histogram. (c) Chronoamperometry curves of Pt-NCs and Pt-NPs-JM in 1 mol L?1 KOH solution containing 0.1 mol L?1 NH4OH at 0.6 V potential. Reprinted with permission from Ref. [107]. Copyright 2020, Elsevier Ltd.
Fig. 26. Schematic representation of the relative orientation of (003), (012), and (100) facets for CuFeO2 (a) and (012), (104), and (212?1) facets for CuFeO2-NH3 (b). (c) Calculated free energy profile for AOR processes on CuFeO2 (212?1) and CuFeO2 (212?1) @Cu-FeOOH (adsorption sites*). The inset is the charge density difference of *NH3 models. Isosurface is 0.003 e ??1. Reprinted with permission from Ref. [108]. Copyright 2023, Wiley-VCH.
Fig. 27. (a) HAADF-STEM images of individual PtIrCu RDNF-HNDs-2, and corresponding 3D models of respectively. (b) CV curves in Ar-saturated 0.1 mol L?1 NH3 and 1.0 mol L?1 KOH at 5 mV s?1. (c) Free energy diagrams of NH3 dehydrogenation at 0.3 V vs. RHE. Reprinted with permission from Ref. [109]. Copyright 2023, Elsevier Ltd.
Fig. 28. (a) TEM pictures of colloidal Pt nanoparticles. (b) Cyclic voltammograms of voltammetric profiles of Pt(100), Pt(110), Pt(111) and polyoriented Pt single crystal in 0.1 mol L?1 NaOH and 10?3 mol L?1 NH3. Scan rate 10 mV s?1. (c) Ammonia oxidation on hydrazine-Pt, borohydride-Pt, and colloidal Pt nanoparticles and polyoriented platinum in 0.2 mol L?1 NaOH and 0.1 mol L?1 NH3. Scan rate 10 mV s?1. Reprinted with permission from Ref. [110]. Copyright 2004, Elsevier Ltd.
Fig. 29. (a) Preparation schematic diagram of PtZn-P-300. (b) Cyclic voltammograms of HRTEM false color images of PtZn-P-300. (c) CV curves in 1.0 mol L?1 KOH with 0.1 mol L?1 NH3·H2O solution at 10 mV s?1. Reprinted with permission from Ref. [111]. Copyright 2023, Elsevier Ltd.
Fig. 30. The effect of NH3 concentration on the AOR. (a) LSV curves of α-Fe2O3 in the 0.1 mol L?1 NaClO4 electrolytes with different NH3 concentrations. (b) The FEs and the average current density at 1.3 V. Reprinted with permission from Ref. [118]. Copyright 2022, Wiley-VCH.
Strategy | Reaction | αin ($) | Produced fertilizer | N-P-K-(S) ratio | αout ($) | δ ($) |
---|---|---|---|---|---|---|
Acid-base reaction | 2NH3 (0.3 mol L-1) + H2SO4 (0.15 mol L-1) → (NH4)2SO4 (0.15 mol L-1) | 0.4 | (NH4)2SO4 | 21-0-0-(24) | 1.7 | 1.3 |
Acid-base reaction | NH3 (0.3 mol L-1) + HNO3 (0.3 mol L-1) → NH4NO3 (0.3 mol L-1) | 1.7 | NH4NO3 | 35-0-0-(0) | 2.1 | 0.3 |
Electrolysis in 0.1 mol L-1 K2SO4 | 2NH3 (0.3 mol L-1) + 3H2O → NH4NO3 (0.15 mol L-1) + 4H2 | 3.6 | NH4NO3 + K2SO4 (3:2) | 14-0-32-(11) | 4.6 | 1.0 |
Electrolysis in 0.1 mol L-1 K2HPO4 | 2NH3 (0.3 mol L-1) + 3H2O → NH4NO3 (0.15 mol L-1) + 4H2 | 6.7 | NH4NO3 + K2HPO4 (3:2) | 14-24-32-(0) | 7.7 | 1.0 |
Table 4 Assessment of several waste-ammonia-to-fertilizer recovery strategies [6]. a
Strategy | Reaction | αin ($) | Produced fertilizer | N-P-K-(S) ratio | αout ($) | δ ($) |
---|---|---|---|---|---|---|
Acid-base reaction | 2NH3 (0.3 mol L-1) + H2SO4 (0.15 mol L-1) → (NH4)2SO4 (0.15 mol L-1) | 0.4 | (NH4)2SO4 | 21-0-0-(24) | 1.7 | 1.3 |
Acid-base reaction | NH3 (0.3 mol L-1) + HNO3 (0.3 mol L-1) → NH4NO3 (0.3 mol L-1) | 1.7 | NH4NO3 | 35-0-0-(0) | 2.1 | 0.3 |
Electrolysis in 0.1 mol L-1 K2SO4 | 2NH3 (0.3 mol L-1) + 3H2O → NH4NO3 (0.15 mol L-1) + 4H2 | 3.6 | NH4NO3 + K2SO4 (3:2) | 14-0-32-(11) | 4.6 | 1.0 |
Electrolysis in 0.1 mol L-1 K2HPO4 | 2NH3 (0.3 mol L-1) + 3H2O → NH4NO3 (0.15 mol L-1) + 4H2 | 6.7 | NH4NO3 + K2HPO4 (3:2) | 14-24-32-(0) | 7.7 | 1.0 |
Strategy | Reaction | αin ($) | Produced fertilizer | N-P-K-(S) ratio | αout ($) | δ ($) | ||
---|---|---|---|---|---|---|---|---|
Acid-base reaction | 2NH3 (0.3 mol L-1) + H2SO4 (0.15 mol L-1) → (NH4)2SO4 (0.15 mol L-1) | 0.15 | (NH4)2SO4 | 21-0-0-(24) | 0.66 | 0.51 | ||
Acid-base reaction | NH3 (0.3 mol L-1) + HNO3 (0.3 mol L-1) → NH4NO3 (0.3 mol L-1) | 1.00 | NH4NO3 | 35-0-0-(0) | 1.18 | 0.18 | ||
Electrolysis in 0.1 mol L-1 K2SO4 | 2NH3 (0.3 mol L-1) + 3H2O → NH4NO3 (0.15 mol L-1) + 4H2 | 1.90 | NH4NO3 + K2SO4 (3:2) | 14-0-32-(11) | 2.49 | 0.59 |
Table 5 Assessment of several waste-ammonia-to-fertilizer recovery strategies [6].
Strategy | Reaction | αin ($) | Produced fertilizer | N-P-K-(S) ratio | αout ($) | δ ($) | ||
---|---|---|---|---|---|---|---|---|
Acid-base reaction | 2NH3 (0.3 mol L-1) + H2SO4 (0.15 mol L-1) → (NH4)2SO4 (0.15 mol L-1) | 0.15 | (NH4)2SO4 | 21-0-0-(24) | 0.66 | 0.51 | ||
Acid-base reaction | NH3 (0.3 mol L-1) + HNO3 (0.3 mol L-1) → NH4NO3 (0.3 mol L-1) | 1.00 | NH4NO3 | 35-0-0-(0) | 1.18 | 0.18 | ||
Electrolysis in 0.1 mol L-1 K2SO4 | 2NH3 (0.3 mol L-1) + 3H2O → NH4NO3 (0.15 mol L-1) + 4H2 | 1.90 | NH4NO3 + K2SO4 (3:2) | 14-0-32-(11) | 2.49 | 0.59 |
|
[1] | 王毅, 王硕, 付云凡, 桑佳琪, 臧一鹏, 魏鹏飞, 李合肥, 汪国雄, 包信和. CuPc/FeNC双组分催化剂协同催化硝酸盐转化为氨[J]. 催化学报, 2024, 56(1): 104-113. |
[2] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[3] | 韩策, 梅丙宝, 张庆华, 张慧敏, 姚鹏飞, 宋平, 宫雪, 崔培昕, 姜政, 谷林, 徐维林. 钒掺杂钨青铜内通道氨配位的钌单原子用于高效析氢反应[J]. 催化学报, 2023, 51(8): 80-89. |
[4] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[5] | Keshia Saradima Indriadi, 韩沛杰, 丁世鹏, 姚冰清, Shinya Furukawa, 何迁, 颜宁. 高分散的Pt促进氨分解中活性FexN的形成[J]. 催化学报, 2023, 50(7): 297-305. |
[6] | 欧阳玲, 梁杰, 罗永嵩, 郑冬冬, 孙圣钧, 刘倩, Mohamed S. Hamdy, 孙旭平, 应斌武. 电催化合成氨的研究进展[J]. 催化学报, 2023, 50(7): 6-44. |
[7] | 井会娟, 龙军, 李欢, 傅笑言, 肖建平. 电催化硝酸盐还原合成氨电势相关性的计算见解[J]. 催化学报, 2023, 48(5): 205-213. |
[8] | 李倩, 刘䶮, 李灿. 钯催化不对称烯丙基化/去对称化反应合成无保护基的2-喹啉酮骨架环状氨基酸[J]. 催化学报, 2023, 47(4): 222-228. |
[9] | 朱可涵, 蒋海凤, 陈高锋, 吴昊, 丁良鑫, 王海辉. 耦合氨氧化和水还原反应实现电化学共合成硝酸盐和氢气[J]. 催化学报, 2023, 55(12): 216-226. |
[10] | 张颖贞, 黄剑莹, 赖跃坤. 氨氧化技术在清洁能源开发和污水净化中的研究进展[J]. 催化学报, 2023, 54(11): 161-177. |
[11] | 付先彪. 关于电还原硝酸根反应的思考[J]. 催化学报, 2023, 53(10): 8-12. |
[12] | 胡瑞文, 龚安界, 廖浪星, 郑颜欣, 刘鑫, 吴鹏, 李福帅, 郁慧丽, 赵晶, 叶龙武, 王斌举, 李爱涛. 苯乙烯及其衍生物的生物氨羟化反应用于β-氨基醇的高效合成[J]. 催化学报, 2023, 44(1): 171-178. |
[13] | 李雅, 王震康, 季浩卿, 张莉芳, 钱涛, 晏成林, 路建美. 氮还原反应中氨定量假阳性结果的来源与消除方法[J]. 催化学报, 2023, 44(1): 50-66. |
[14] | 蒋亚飞, 刘锦程, 许聪俏, 李隽, 肖海. 打破合成氨反应中线性标度关系的碗型活性位点设计: 来自LaRuSi及其同构电子化物的启示[J]. 催化学报, 2022, 43(8): 2183-2192. |
[15] | 高怡静, 张世杰, 孙翔, 赵伟, 卓涵, 庄桂林, 王式彬, 姚子豪, 邓声威, 钟兴, 魏中哲, 王建国. 氧官能团MXenes用于电催化合成氨的理论筛选[J]. 催化学报, 2022, 43(7): 1860-1869. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||