催化学报 ›› 2024, Vol. 56: 51-73.DOI: 10.1016/S1872-2067(23)64569-3
收稿日期:
2023-09-01
接受日期:
2023-11-16
出版日期:
2024-01-18
发布日期:
2024-01-10
通讯作者:
*电子信箱: wangty@hust.edu.cn (王谭源), qing_li@hust.edu.cn (李箐).
基金资助:
Yiping Li, Tanyuan Wang(), Zhangyi Yao, Qi’an Chen, Qing Li(
)
Received:
2023-09-01
Accepted:
2023-11-16
Online:
2024-01-18
Published:
2024-01-10
Contact:
*E-mail: wangty@hust.edu.cn (T. Wang), qing_li@hust.edu.cn (Q. Li).
About author:
Tanyuan Wang is currently an associate professor of School of Materials Science and Engineering in Huazhong University of Science and Technology (HUST), China. He received his Ph.D. in Chemistry from Peking University in 2015 and worked as a visiting scholar at Stanford University from 2017 to 2018. His research interests are electrocatalysis and nanomaterials synthesis.Supported by:
摘要:
铂族金属(PGM)催化剂被认为是用于能量转换和存储设备(如燃料电池和水电解器)的最佳催化剂之一, 但活性和稳定性不足极大地限制了其商业化应用. 近年来, 非金属原子(氢、硼、碳、氮、磷和硫等)掺杂策略引起了广泛关注, 该方法可以对铂族金属的精细电子和配位结构进行调控, 从而优化铂族金属的电催化活性和稳定性. 非金属掺杂具有独特的优势: 首先, 非金属的原子半径较小, 可以进入铂族金属的间隙位点, 为调节铂族金属的电子结构提供了更多的可能性; 其次, 掺杂的非金属会诱导强电荷转移, 并与主体金属产生s, p-d杂化, 这与金属-金属合金中的d-d轨道耦合不同; 第三, 非金属掺杂的铂族金属基催化剂由于具有较强的非金属-金属键, 从而表现出较好的耐久性. 本文详细探讨了非金属掺杂铂族金属催化剂的合成和应用, 并揭示了非金属掺杂的催化机理和构效关系.
本文总结了非金属掺杂铂族金属基催化剂在电催化领域的一些代表性进展, 讨论了影响催化剂活性和稳定性的关键因素, 并介绍了非金属掺杂改善铂族金属基催化剂性能的基本原理. 探讨了非金属掺杂铂族金属基催化剂的表征技术和理论方法, 其中包括可直接观测到非金属原子的先进成像技术以及原位表征方法, 辅助以密度泛函理论以及分子动力学模拟等理论计算方法, 以进一步揭示催化剂性能增强机制. 详细列举了非金属掺杂铂族电催化剂的合成方法, 从气相沉积、高温热解、湿化学合成到电化学原位合成, 提供了详尽的合成方案, 并提出了针对贵金属活性中心的非金属修饰策略, 旨在为未来材料设计提供启示. 概述了非金属掺杂铂族金属基催化剂在电催化中的应用, 重点揭示了非金属掺杂带来的结构-性能构效关系. 在活性方面, 非金属掺杂可以从配体效应、应力效应、微应变等方面影响铂族金属的d带重心, 从而影响活性位点与反应中间体的吸附, 而这种影响作用也因每种非金属的电负性、原子半径、掺杂方式等不同而不同, 可通过调控掺杂种类/方式实现精细调控; 同时, 非贵金属的协同效应可以增强对OH的吸附, 抑制活性位点的毒化. 在稳定性方面, 非金属可以通过与金属形成稳定的金属-非金属键抑制金属的溶解, 或者减弱金属与氧的相互作用, 防止其被氧化; 同时, 非金属的掺入可以提高金属的功函数, 提高其溶解电位, 从而提升催化剂稳定性.
最后, 本文提出了该类电催化材料面临的机遇和挑战, 其中包括: (1) 开发更加可控的非金属掺杂策略; (2) 更加深入地研究非金属掺杂带来的构效关系; (3) 探索新的非金属掺杂催化剂, 并进一步拓展到其他催化领域; (4) 发展抑制非金属组分溶解的通用策略; (5) 重视催化剂在器件层面的性能评估. 综上, 本文不仅为非金属掺杂贵金属基催化剂进一步的研究提供启示, 还为深入理解催化、纳米材料的合成提供参考.
李伊萍, 王谭源, 姚璋懿, 陈麒安, 李箐. 非金属掺杂提升铂族金属电催化剂性能[J]. 催化学报, 2024, 56: 51-73.
Yiping Li, Tanyuan Wang, Zhangyi Yao, Qi’an Chen, Qing Li. Enhancing the performance of platinum group metal-based electrocatalysts through nonmetallic element doping[J]. Chinese Journal of Catalysis, 2024, 56: 51-73.
Fig. 2. Mechanisms on tuning the activity of PGM-based electrocatalysts through nonmetallic element doping. (a) The effect of strain on the width and position of the d band for PGM. (b) The microstrain, represented as the change in peak broadening of WAXS patterns. And the peak position is related to macrostrain or global strain. Reprinted with permission from Ref. [71]. Copyright 2018, Springer Nature. (c) The influence of ligand effect on the εd of PGM. (d) Illustration of synergistic effect, where nonmetals and PGMs both act as adsorption sites for different intermediates. The green and pink balls represent PGM and nonmetal atoms respectively.
Fig. 3. (a) The correlation between the dissolution amounts of metals during oxidation process and the cohesive energy (Ecoh). Reprinted with permission from Ref. [102]. Copyright 2021, Wiley-VCH. (b) Total bond energies of 32-metal-atom supercell with FCC structure from the fitting (y-axis) vs. the DFT-calculated total bond energies used for the fit (x-axis). The more negative energy end (?185 eV) corresponds the composition with high concentration of interstitial carbon. Reprinted with permission from Ref. [105]. Copyright 2021, Elsevier.
Fig. 4. (a) Relationship between work functions of metals and their corresponding dissolution potential. Reprinted with permission from Ref. [113]. Copyright 2022, Electrochemical Society. (b) Relationship between the work functions and carbon content. Reprinted with permission from Ref. [116]. Copyright 2021, Electrochemical Society.
Nonmetal | Located position in the lattice of PGMs | Advantage | Disadvantage |
---|---|---|---|
H | interstitial sites | good electron donor; wide doping concentration range | unstable; introducing unfavorable tensile strain for certain reactions |
B | interstitial sites | good electron donor; flexible structure adjustment | introducing unfavorable tensile strain for certain reactions |
C | interstitial sites | strong C-metal bonds; inhibiting the dissolution of metal | forming compounds with metal, resulting in phase separation |
N | interstitial or substitutional sites | strong N-metal bonds; inhibiting the dissolution of metal | forming compounds with metal, resulting in phase separation |
P | interstitial or substitutional sites | causing lattice distortion and optimized structure; favorable for OH adsorption | may be oxidized and then dissolve |
S | interstitial or substitutional sites | strong interaction with PGMs; inhibiting the dissolution of metal | may poison active sites; limited doping pattern |
Table 1 The summary of properties for each doped nonmetal.
Nonmetal | Located position in the lattice of PGMs | Advantage | Disadvantage |
---|---|---|---|
H | interstitial sites | good electron donor; wide doping concentration range | unstable; introducing unfavorable tensile strain for certain reactions |
B | interstitial sites | good electron donor; flexible structure adjustment | introducing unfavorable tensile strain for certain reactions |
C | interstitial sites | strong C-metal bonds; inhibiting the dissolution of metal | forming compounds with metal, resulting in phase separation |
N | interstitial or substitutional sites | strong N-metal bonds; inhibiting the dissolution of metal | forming compounds with metal, resulting in phase separation |
P | interstitial or substitutional sites | causing lattice distortion and optimized structure; favorable for OH adsorption | may be oxidized and then dissolve |
S | interstitial or substitutional sites | strong interaction with PGMs; inhibiting the dissolution of metal | may poison active sites; limited doping pattern |
Fig. 5. (a) Differential phase contrast images of PdHx nanoparticle, where the brighter atoms represent Pd atoms, while the darker and smaller atoms represent H atoms. Reprinted with permission from Ref. [46]. Copyright 2020, Wiley-VCH. (b) Ptychographic phase image of B doped Pd nanoparticle after aberration correction, where the red balls refer to the B atoms. Reprinted with permission from Ref. [126]. Copyright 2019, American Chemical Society.
Fig. 6. (a) Accordingly in-situ XPDF from room temperature to the elevated temperature, after zoning up in the range of 2-6 ?. Reprinted with permission from Ref. [126]. Copyright 2019, American Chemical Society. (b) In-situ XRD of Pd@Ru under different gas atmospheres. Reprinted with permission from Ref. [127]. Copyright 2023, American Chemical Society.
Fig. 7. Operando XANES (a) and EXAFS spectra (b) of Os-B in 1.0 mol L?1 KOH. Reprinted with permission from Ref. [129]. Copyright 2023, Springer Nature.
Fig. 8. (a) Reaction process schematic diagram of PtNiP NWs in alkaline condition. Reprinted with permission from Ref. [62]. Copyright 2021, Elsevier. (b) Reaction path ways of P-Rh for alkaline HER and HOR. Reprinted with permission from Ref. [132]. Copyright 2020, Royal Society of Chemistry.
Fig. 10. (a) The correlation between the N contents and NH3 pressure in N doped PtCo catalysts. Reprinted with permission from Ref. [136]. Copyright 2021, American Chemical Society. (b) Schematic of the high-temperature pyrolysis synthesis of P,Mo-Ru@P-doped porous carbon. Reprinted with permission from Ref. [29]. Copyright 2022, Wiley-VCH. (c) Schematic of the Schematic of the wet chemical synthesis of Pd-B alloy mesoporous nanospheres. Reprinted with permission from Ref. [139]. Copyright 2022, Royal Society of Chemistry. (d) Schematic of hydrogen dissolving in Au@Pd@Ru catalysts during hydrogen oxidation reaction. Reprinted with permission from Ref. [127]. Copyright 2023, American Chemical Society.
Fig. 11. (a) Scheme for the synthesis; High-resolution XPS spectra of Ag 3d spectra (b) and Ni 2p3/2 spectra (c). Reprinted with permission from Ref. [144]. Copyright 2021, American Chemical Society. (d) Rh-Pd solid-state miscibility gap. (e) The schematic illustration of the formation energy of 2D RhPd alloy and alloy hydride. Reprinted with permission from Ref. [141]. Copyright 2020, American Chemical Society.
Fig. 12. HR-TEM image (a) and Nyquist plot (b) of a/c-RuB aerogel. Reprinted with permission from Ref. [147]. Copyright 2023, Wiley-VCH. (c) The electronic local function of B-Rh@CN. Reprinted with permission from Ref. [138]. Copyright 2023, Elsevier. (d) The differential charge density distributions between P,Mo-Ru clusters and PC. Red represents positive charges and green represents negative charges. (e) Differential charge density distributions for selected single Ru atom in P,Mo-Ru cluster. Reprinted with permission from Ref. [29]. Copyright 2022, Wiley-VCH.
Catalyst | Nonmetal source | Synthesis method | Electrolyte | MA (A mg-1) at half cell test | Maximum power density (mA cm-2) at MEA | Ref. |
---|---|---|---|---|---|---|
C-doped PdMo bimetallene | glucose | wet chemical reduction | 0.1 mol L-1 KOH | 7.013 | — | [ |
B-doped Pd nanoparticles | DMAB | wet chemical reduction | 0.1 mol L-1 KOH | 2.38 | — | [ |
B-doped Pt nanoparticles | DMAB | wet chemical reduction | 0.1 mol L-1 HClO4 | 0.25 | 1.6 for H2-O2 | [ |
P-doped Pt nanoparticles | NaH2PO2 | wet chemical reduction | 0.1 mol L-1 HClO4 | 1 | 1.06 for H2-air | [ |
N-doped Intermetallic PtNi nanoparticles | NH3 | chemical vapor deposition | 0.1 mol L-1 HClO4 | 1.83 | — | [ |
N-doped PtCo nanoparticles | NH3 and N2 | chemical vapor deposition | 0.1 mol L-1 HClO4 | more than 0.7 | — | [ |
N-doped Pt nanoparticles | NH3 | chemical vapor deposition | 0.1 mol L-1 HClO4 | 0.10 | 1.2 for H2-air | [ |
Table 2 Summary of nonmetal doped PGM-based catalysts for ORR.
Catalyst | Nonmetal source | Synthesis method | Electrolyte | MA (A mg-1) at half cell test | Maximum power density (mA cm-2) at MEA | Ref. |
---|---|---|---|---|---|---|
C-doped PdMo bimetallene | glucose | wet chemical reduction | 0.1 mol L-1 KOH | 7.013 | — | [ |
B-doped Pd nanoparticles | DMAB | wet chemical reduction | 0.1 mol L-1 KOH | 2.38 | — | [ |
B-doped Pt nanoparticles | DMAB | wet chemical reduction | 0.1 mol L-1 HClO4 | 0.25 | 1.6 for H2-O2 | [ |
P-doped Pt nanoparticles | NaH2PO2 | wet chemical reduction | 0.1 mol L-1 HClO4 | 1 | 1.06 for H2-air | [ |
N-doped Intermetallic PtNi nanoparticles | NH3 | chemical vapor deposition | 0.1 mol L-1 HClO4 | 1.83 | — | [ |
N-doped PtCo nanoparticles | NH3 and N2 | chemical vapor deposition | 0.1 mol L-1 HClO4 | more than 0.7 | — | [ |
N-doped Pt nanoparticles | NH3 | chemical vapor deposition | 0.1 mol L-1 HClO4 | 0.10 | 1.2 for H2-air | [ |
Fig. 14. (a) Cross section of the P-Pt(111) model showing concave site (site 3 and 4) of surface Pt atoms. (b) DFT calculation models of P doped Pt/C, which indicates that the OH binding energy on Pt site 4 decreased by 0.12 eV relative to Pt(111), close to the predicted optimal value; Gold: Pt; blue: surface Pt; green: P; red: O; and white: H. (c) Polarization curves of P doped Pt/C in H2-air fuel cells. Reprinted with permission from Ref. [154]. Copyright 2021, American Chemical Society. (d) Ni K-edge extended X-ray absorption fine structure spectrum at 0.42 V with a first-shell fit, indicating the formation of Ni?N bond. Reprinted with permission from Ref. [40]. Copyright 2020, American Chemical Society.
Fig. 15. (a) Bader charges and geometrical configurations of oxygen atoms adsorbed on the modeled Pt (111) surfaces with B doping at B coverage = 0.75. The blue, orange, and red balls represent Pt, B, and O atoms, respectively. (b) Polarization curves of B doped Pt/C and commercial Pt/C in H2-O2 fuel cells before and after ADT. Reprinted with permission from Ref. [30]. Copyright 2022, American Chemical Society.
Fig. 16. (a) The synthetic process. (b) DFT calculated stable configuration of C-doped PdMo alloy, wherein Er represents the energy of removing a Mo atom from the system. (c) MA retention of C-doped PdMo, pure PdMo bimetallene and commercial Pt/C. Reprinted with permission from Ref. [47]. Copyright 2022, American Chemical Society.
Catalyst | Nonmetal source | Synthesis method | Electrolyte | Reaction | Performance (HER: η10 (mV), HOR: j0 (mA cm−2)) | Ref. |
---|---|---|---|---|---|---|
P doped Pt nanodendrites | NaH2PO2 | wet chemical reduction | 0.5 mol L‒1 H2SO4 | HER | 13.3 | [ |
S-Doped RuP @N,P, S-Doped carbon | cyclotriphosphazene- co-4,4′-sulfonyldiphenol | high temperature pyrolysis process | 1 mol L‒1 KOH | HER | 92 | [ |
P,Mo-Ru @P-doped porous carbon | phosphomolybdic acid hydrate | high temperature pyrolysis process | 1 mol L‒1 KOH | HER | 21 | [ |
P-Ru/C | TOPO | wet chemical reduction | 0.1 mol L‒1 KOH | HER/HOR | 31 for HER, 0.72 for HOR | [ |
PtNiP nanowires | phosphorus powder | wet chemical reduction | 1 mol L‒1 KOH | HER | 9 | [ |
P-doped Rh nanoparticles | TOP | wet chemical reduction | 1 mol L‒1 KOH for HER, 0.1 mol L‒1 KOH for HOR | HER/HOR | 11 for HER, 0.683 for HOR | [ |
B-Rh@NC | H3BO3 | high temperature pyrolysis process | full pH range | HER | 26 in 1.0 mol L‒1 KOH, 43 in 0.5 mol L‒1 H2SO4, 70 in 1.0 mol L‒1 PBS | [ |
B doped Pd nanoparticles | DMAB | wet chemical reduction | 1 mol L‒1 KOH | HER | 38 | [ |
IrPdH nanodendrites | ethanol | wet chemical reduction | full pH range | HER | 14, 25, and 60 respectively in 0.5 mol L‒1 H2SO4, 1 mol L‒1 KOH, and 1 mol L‒1 PBS electrolyte | [ |
RhPdH 2D Bimetallene Nanosheets | HCHO | wet chemical reduction | 1 mol L‒1 KOH | HER | 40 | [ |
B-Os aerogels | NaBH4 | wet chemical reduction | full pH range | HER | 12, 19 and 33 respectively in 0.5 mol L‒1 H2SO4, 1 mol L‒1 KOH, and 1 mol L‒1 PBS electrolyte | [ |
PdHx@Ru metallenes | HCHO | wet chemical reduction | 1 mol L‒1 KOH | HER | 30 | [ |
Pd@Pd-P@Pt sandwich nanocubes | TOP | wet chemical reduction | 1 mol L‒1 KOH | HER | MA = 5.02 A mg−1Pt@−0.07 V | [ |
Table 3 Summary of nonmetal doped PGM-based catalysts for HER/HOR.
Catalyst | Nonmetal source | Synthesis method | Electrolyte | Reaction | Performance (HER: η10 (mV), HOR: j0 (mA cm−2)) | Ref. |
---|---|---|---|---|---|---|
P doped Pt nanodendrites | NaH2PO2 | wet chemical reduction | 0.5 mol L‒1 H2SO4 | HER | 13.3 | [ |
S-Doped RuP @N,P, S-Doped carbon | cyclotriphosphazene- co-4,4′-sulfonyldiphenol | high temperature pyrolysis process | 1 mol L‒1 KOH | HER | 92 | [ |
P,Mo-Ru @P-doped porous carbon | phosphomolybdic acid hydrate | high temperature pyrolysis process | 1 mol L‒1 KOH | HER | 21 | [ |
P-Ru/C | TOPO | wet chemical reduction | 0.1 mol L‒1 KOH | HER/HOR | 31 for HER, 0.72 for HOR | [ |
PtNiP nanowires | phosphorus powder | wet chemical reduction | 1 mol L‒1 KOH | HER | 9 | [ |
P-doped Rh nanoparticles | TOP | wet chemical reduction | 1 mol L‒1 KOH for HER, 0.1 mol L‒1 KOH for HOR | HER/HOR | 11 for HER, 0.683 for HOR | [ |
B-Rh@NC | H3BO3 | high temperature pyrolysis process | full pH range | HER | 26 in 1.0 mol L‒1 KOH, 43 in 0.5 mol L‒1 H2SO4, 70 in 1.0 mol L‒1 PBS | [ |
B doped Pd nanoparticles | DMAB | wet chemical reduction | 1 mol L‒1 KOH | HER | 38 | [ |
IrPdH nanodendrites | ethanol | wet chemical reduction | full pH range | HER | 14, 25, and 60 respectively in 0.5 mol L‒1 H2SO4, 1 mol L‒1 KOH, and 1 mol L‒1 PBS electrolyte | [ |
RhPdH 2D Bimetallene Nanosheets | HCHO | wet chemical reduction | 1 mol L‒1 KOH | HER | 40 | [ |
B-Os aerogels | NaBH4 | wet chemical reduction | full pH range | HER | 12, 19 and 33 respectively in 0.5 mol L‒1 H2SO4, 1 mol L‒1 KOH, and 1 mol L‒1 PBS electrolyte | [ |
PdHx@Ru metallenes | HCHO | wet chemical reduction | 1 mol L‒1 KOH | HER | 30 | [ |
Pd@Pd-P@Pt sandwich nanocubes | TOP | wet chemical reduction | 1 mol L‒1 KOH | HER | MA = 5.02 A mg−1Pt@−0.07 V | [ |
Fig. 18. (a) Proposed electrocatalytic mechanisms of PtP NDs for HER, green: Pt; red: P; orange: O; and white: H. (b) Linear sweep voltammetry curves of PtP NDs, Pt NDs, and commercial Pt/C in 0.5 mol L-1 H2SO4 at a scan rate of 5 mV s-1. Reprinted with permission from Ref. [85]. Copyright 2022, Wiley-VCH.
Fig. 19. (a) Calculations of H and OH binding energies of B doped Pd (111) for the HOR plotted as a function of the calculated εd referenced to the Fermi energy. Reprinted with permission from Ref. [36]. Copyright 2022, Wiley-VCH. (b) The optimized structures of catalytic sites and electronic localization function for IrPd (111) and IrPdH (111) surface. Reprinted with permission from Ref. [49]. Copyright 2022, Wiley-VCH. (c) Creation of tunable lattice strain on Pt shells through the continuous volume expansion of Pd nanocubes tuning phosphorization degrees of Pd-P cores. (d) The correlation between normalized HER catalytic activities (the black line represents MA and the red line represents SA) of all strained Pt shells and strain of Pt shells. Reprinted with permission from Ref. [163]. Copyright 2021, Springer Nature.
Fig. 20. (a) The hydrogen adsorption free energy (ΔGH*) on Ru, P1-Ru, P2-Ru, and P3-Ru, respectively. (b) Reaction paths of P2-Ru and Ru toward alkaline HER and HOR. Reprinted with permission from Ref. [43]. Copyright 2022, American Chemical Society. (c) Calculated Gibbs free energies of *OH onto different locations of B-Ru (002) and Ru (002). (d) Two H* atoms on the Ru surface recombine to form H2, and *OH desorbs from the B sites of B doped Ru@CNT. Reprinted with permission from Ref. [76]. Copyright 2022, Elsevier.
Catalyst | Nonmetal source | Synthesis method | Electrolyte | Reaction | Performance | Ref. |
---|---|---|---|---|---|---|
P doped Pt Nanodendrites | NaH2PO2 | wet chemical reduction | 1.0 mol L‒1 KOH + 1.0 mol L‒1 methanol | MOR | MA = 4.2 A mgPt-1 | [ |
P-Doped Ag@Pd nanoparticles | triphenyl phosphorous | wet chemical reduction | 1 mol L‒1 KOH + 1 mol L‒1 ethanol | EOR | MA = 7.2 A mgPd-1 | [ |
P-doped PtNi concave nanocubes | TOP | wet chemical reduction | 0.5 mol L‒1 H2SO4 + 2 mol L‒1 CH3OH | MOR | MA = 0.38 A mgPt-1, SA = 3.85 mA cm-2 | [ |
PdBP NWs | NaH2PO2, DMAB, H3BO3 | wet chemical reduction | 1 mol L‒1 KOH and 1 mol L‒1 ethanol | EOR | MA = 4.15 A mgPd-1 | [ |
PdBP nanorods | NaH2PO2, NaBH4 | wet chemical reduction | 0.5 mol L‒1 H2SO4 +0.5 mol L‒1 HCOOH | FAOR | MA = 1.32 A mgPd-1, SA = 5.58 mA cm-2 | [ |
Pt-Ni-P nanocages | NaH2PO2 | wet chemical reduction | 0.5 mol L‒1 H2SO4 and 1 mol L‒1 CH3OH | MOR | MA = 1.22 A mgPt-1, SA = 2.28 mA cm-2 | [ |
PdH0.43@Pt octahedral nanoparticles | DMF | wet chemical reduction | 1.0 mol L‒1 KOH +1.0 mol L‒1 methanol | MOR | MA = 3.68 A mg-1 | [ |
Pd@Pd-P@Pt sandwich nanocubes | TOP | wet chemical reduction | 0.5 mol L‒1 H2SO4 and 1 mol L‒1 CH3OH | MOR | MA = 2.94 A mg-1@0.65V, SA = 12.82 mA cm-2@0.65V | [ |
Table 4 Summary of nonmetal doped PGM-based catalysts for liquid small molecule oxidation reactions.
Catalyst | Nonmetal source | Synthesis method | Electrolyte | Reaction | Performance | Ref. |
---|---|---|---|---|---|---|
P doped Pt Nanodendrites | NaH2PO2 | wet chemical reduction | 1.0 mol L‒1 KOH + 1.0 mol L‒1 methanol | MOR | MA = 4.2 A mgPt-1 | [ |
P-Doped Ag@Pd nanoparticles | triphenyl phosphorous | wet chemical reduction | 1 mol L‒1 KOH + 1 mol L‒1 ethanol | EOR | MA = 7.2 A mgPd-1 | [ |
P-doped PtNi concave nanocubes | TOP | wet chemical reduction | 0.5 mol L‒1 H2SO4 + 2 mol L‒1 CH3OH | MOR | MA = 0.38 A mgPt-1, SA = 3.85 mA cm-2 | [ |
PdBP NWs | NaH2PO2, DMAB, H3BO3 | wet chemical reduction | 1 mol L‒1 KOH and 1 mol L‒1 ethanol | EOR | MA = 4.15 A mgPd-1 | [ |
PdBP nanorods | NaH2PO2, NaBH4 | wet chemical reduction | 0.5 mol L‒1 H2SO4 +0.5 mol L‒1 HCOOH | FAOR | MA = 1.32 A mgPd-1, SA = 5.58 mA cm-2 | [ |
Pt-Ni-P nanocages | NaH2PO2 | wet chemical reduction | 0.5 mol L‒1 H2SO4 and 1 mol L‒1 CH3OH | MOR | MA = 1.22 A mgPt-1, SA = 2.28 mA cm-2 | [ |
PdH0.43@Pt octahedral nanoparticles | DMF | wet chemical reduction | 1.0 mol L‒1 KOH +1.0 mol L‒1 methanol | MOR | MA = 3.68 A mg-1 | [ |
Pd@Pd-P@Pt sandwich nanocubes | TOP | wet chemical reduction | 0.5 mol L‒1 H2SO4 and 1 mol L‒1 CH3OH | MOR | MA = 2.94 A mg-1@0.65V, SA = 12.82 mA cm-2@0.65V | [ |
Fig. 22. (a) In-situ Fourier transform infrared spectroscopy spectra of MOR on P-PtNi CNC. (b) MA and SA of P-PtNi CNC, PtNi CNC, commercial PtRu/C and commercial Pt/C in 0.5 mol L?1 H2SO4 and 2 mol L?1 CH3OH. Reprinted with permission from Ref. [88]. Copyright 2022, Springer Nature. (c) Scheme of the preparation. (d) Pt mass-normalized histogram. (e) Durability evaluation by chronoamperometry tests at 0.77 V vs. RHE. Reprinted with permission from Ref. [170]. Copyright 2021, American Chemical Society. (f) Free-energy diagrams for formic acid decomposition via the H-COO*, *COOH and OC-OH* pathways over Pd(111) and Pd(B/OSS)0.5 ML. Reprinted with permission from Ref. [172]. Copyright 2015, American Chemical Society.
|
[1] | 齐宴宾, 朱以华, 江宏亮, 李春忠. 通过NiMo氧化物-CoMo氧化物混合物衍生催化剂中的界面相互作用促进甲醇到甲酸盐的电催化氧化[J]. 催化学报, 2024, 56(1): 139-149. |
[2] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[3] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[4] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[5] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[6] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[7] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[8] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[9] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[10] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[11] | 贡立圆, 王颖, 刘杰, 王显, 李阳, 侯帅, 武志坚, 金钊, 刘长鹏, 邢巍, 葛君杰. 重塑位于火山曲线右支的弱吸附金属单原子位点的配位环境及电子结构[J]. 催化学报, 2023, 50(7): 352-360. |
[12] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[13] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[14] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[15] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||