催化学报 ›› 2024, Vol. 59: 303-323.DOI: 10.1016/S1872-2067(24)60010-0
Dae-Hwan Lima, Aadil Bathlaa, Hassan Anwerb, Sherif A. Younisa,c, Danil W. Boukhvalovd,e, Ki-Hyun Kima,*()
收稿日期:
2024-01-16
接受日期:
2024-02-14
出版日期:
2024-04-18
发布日期:
2024-04-15
通讯作者:
*电子信箱:
Dae-Hwan Lima, Aadil Bathlaa, Hassan Anwerb, Sherif A. Younisa,c, Danil W. Boukhvalovd,e, Ki-Hyun Kima,*()
Received:
2024-01-16
Accepted:
2024-02-14
Online:
2024-04-18
Published:
2024-04-15
Contact:
*E-mail: 摘要:
通过氮掺杂TiO2 (N-TiO2)浸渍蜂窝过滤器构建了一系列原型光催化空气净化器(AP(Nx-Cy))系统, 并用于在UV-LED光(1 W)照射条件下光催化分解0.5-5 ppm甲醛(CH2O)蒸汽. 在上述催化过滤器系统中, Nx和Cy分别代表N/Ti摩尔比(0-20)和N-TiO2浓度(2-20 mg mL-1). 光催化分解实验结果表明, AP(N10-C10)的性能最好, 其催化CH2O转化为CO2的转化率最高, 循环反应10次后CO2产率仍达到89.2%, 在干燥空气中的清洁空气输送速率为9.45 L min-1. N10-C10的电荷载流子寿命(τa: 1.70 ns)优于其他样品(如纯TiO2的电荷载流子寿命为1.37 ns), 这表明N缺陷(No)有助于降低带隙(3.10 eV)和产生氧空位OVs-Ti3+, 这与密度泛函理论(DFT)模拟结果一致.
采用原位漫反射红外傅里叶变换、电子顺磁共振和DFT分析等多种方法研究了CH2O的光催化氧化途径. 结果表明, 氧化过程涉及多个能量有利的中间步骤(例如CH2O以CH2O2的形式在TiO2-OV {110} 表面的桥连O/OH基团上发生放热共价吸附, 随后通过催化脱氢/氧化反应直接生成CO2: CH2O2/HCOO- + •OH → H2O + CO2). 这些步骤与具有N杂质的{101}表面上化学活性Ti原子的态密度计算结果一致. 预计No缺陷和OVs的存在将通过降低活化能垒来影响反应能量和中间产物, 从而在加湿条件下实现有效的矿化.
综上, 本文为设计和构建先进的光催化系统, 并用于环境空气中醛类挥发性有机物(VOCs)的有效矿化提供了新思路.
Dae-Hwan Lim, Aadil Bathla, Hassan Anwer, Sherif A. Younis, Danil W. Boukhvalov, Ki-Hyun Kim. 氮掺杂对环境空气中TiO2纳米催化剂抗甲醛光催化矿化的影响[J]. 催化学报, 2024, 59: 303-323.
Dae-Hwan Lim, Aadil Bathla, Hassan Anwer, Sherif A. Younis, Danil W. Boukhvalov, Ki-Hyun Kim. The effects of nitrogen-doping on photocatalytic mineralization of TiO2 nanocatalyst against formaldehyde in ambient air[J]. Chinese Journal of Catalysis, 2024, 59: 303-323.
Order | Code | N/Ti molar ratio (sample code: N) | TiO2 concentration in solution (sample code: C, mg mL-1) | Volume of solution (mL) | Loading mass onto the HC filter (mg) |
---|---|---|---|---|---|
1 | AP (N0-C1) | 0 | 1 | 523 | 24.2 |
2 | AP (N0-C5) | 5 | 209 | 46.5 | |
3 | AP (N0-C10) | 10 | 105 | 57.4 | |
4 | AP (N0-C20) | 20 | 52.3 | 85.1 | |
5 | AP (N1-C1) | 1 | 1 | 523 | 25.1 |
6 | AP (N1-C5) | 5 | 209 | 45.4 | |
7 | AP (N1-C10) | 10 | 105 | 56.3 | |
8 | AP (N1-C20) | 20 | 52.3 | 87.2 | |
9 | AP (N5-C1) | 5 | 1 | 523 | 25.7 |
10 | AP (N5-C5) | 5 | 209 | 47 | |
11 | AP (N5-C10) | 10 | 105 | 59.2 | |
12 | AP (N5-C20) | 20 | 52.3 | 87.3 | |
13 | AP (N10-C1) | 10 | 1 | 523 | 25.6 |
14 | AP (N10-C5) | 5 | 209 | 47 | |
15 | AP (N10-C10) | 10 | 105 | 59.9 | |
16 | AP (N10-C20) | 20 | 52.3 | 88.3 | |
17 | AP (N20-C10) | 20 | 10 | 105 | 58.8 |
Table 1 List of N-TiO2 filters prepared for the construction of AP systems. The code for each catalyst filter has been assigned in relation to the synthesis conditions and loading mass on the ceramic honeycomb (HC) filter.
Order | Code | N/Ti molar ratio (sample code: N) | TiO2 concentration in solution (sample code: C, mg mL-1) | Volume of solution (mL) | Loading mass onto the HC filter (mg) |
---|---|---|---|---|---|
1 | AP (N0-C1) | 0 | 1 | 523 | 24.2 |
2 | AP (N0-C5) | 5 | 209 | 46.5 | |
3 | AP (N0-C10) | 10 | 105 | 57.4 | |
4 | AP (N0-C20) | 20 | 52.3 | 85.1 | |
5 | AP (N1-C1) | 1 | 1 | 523 | 25.1 |
6 | AP (N1-C5) | 5 | 209 | 45.4 | |
7 | AP (N1-C10) | 10 | 105 | 56.3 | |
8 | AP (N1-C20) | 20 | 52.3 | 87.2 | |
9 | AP (N5-C1) | 5 | 1 | 523 | 25.7 |
10 | AP (N5-C5) | 5 | 209 | 47 | |
11 | AP (N5-C10) | 10 | 105 | 59.2 | |
12 | AP (N5-C20) | 20 | 52.3 | 87.3 | |
13 | AP (N10-C1) | 10 | 1 | 523 | 25.6 |
14 | AP (N10-C5) | 5 | 209 | 47 | |
15 | AP (N10-C10) | 10 | 105 | 59.9 | |
16 | AP (N10-C20) | 20 | 52.3 | 88.3 | |
17 | AP (N20-C10) | 20 | 10 | 105 | 58.8 |
Order | Sample code* | BET surface area (SBET, m2 g-1) | Pore volume (Vt, cm3 g-1) | Average pore diameter (dp, nm) | Crystallite size (nm) | Bandgap energy (eV) | Photocurrent density (μA cm-2) |
---|---|---|---|---|---|---|---|
1 | AP (N0-C10) | 75.1 | 0.184 | 7.39 | 11.1 | 3.25 | 25.8 |
2 | AP (N1-C10) | 59.2 | 0.100 | 5.25 | 10.6 | 3.10 | 29.4 |
3 | AP (N5-C10) | 62.6 | 0.121 | 5.77 | 10.4 | 3.10 | 33.8 |
4 | AP (N10-C10) | 64.4 | 0.105 | 4.79 | 10.0 | 3.10 | 45.4 |
Table 2 Physical characteristics of AP systems built using diverse forms of N-TiO2 filters (e.g., AP (N0-C10), AP (N1-C10), AP (N5-C10), and AP (N10-C10)).
Order | Sample code* | BET surface area (SBET, m2 g-1) | Pore volume (Vt, cm3 g-1) | Average pore diameter (dp, nm) | Crystallite size (nm) | Bandgap energy (eV) | Photocurrent density (μA cm-2) |
---|---|---|---|---|---|---|---|
1 | AP (N0-C10) | 75.1 | 0.184 | 7.39 | 11.1 | 3.25 | 25.8 |
2 | AP (N1-C10) | 59.2 | 0.100 | 5.25 | 10.6 | 3.10 | 29.4 |
3 | AP (N5-C10) | 62.6 | 0.121 | 5.77 | 10.4 | 3.10 | 33.8 |
4 | AP (N10-C10) | 64.4 | 0.105 | 4.79 | 10.0 | 3.10 | 45.4 |
Fig. 1. SEM images of AP HC-Nx-TiO2 photocatalytic systems: AP (N0-C10) (a), AP (N1-C10) (b), AP (N5-C10) (c), AP (N10-C10) (d), and EDS mapping of AP (N10-C10) (e-h).
Fig. 3. The XPS spectra of N-TiO2 photocatalysts (e.g., AP (N0-C10), AP (N1-C10), AP (N5-C10), and AP (N10-C10)). (a) full XPS scan; (b) Ti 2p; (c) O 1s; (d) N 1s signals.
Fig. 4. The optical properties of AP (Nx-C10; x = 0, 1, 5, 10, and 20) filters. (a) UV-vis DRS spectra; (b) Tauc plots (band gap energy); (c) PL spectra; (d) TRPL spectra.
Fig. 6. Removal efficiency of FA (5 ppm) onto AP (Nx-Cy) photocatalytic filters under combinatorial effects of Nx (0-10) and Cy (2-20 mg mL-1) under UV-LED light (a) and AP (Nx-C10; x = 0, 10, and 20) in dark vs. UV-LED light conditions (b).
A. Types of photocatalytic filter | ||||||
---|---|---|---|---|---|---|
Order | Composites | Decay rate (min-1) | R2 | CADR (L min-1) | RE (%) | |
1 | AP (blank) | 0.01 | 0.9168 | —a | — a | |
2 | AP (N0-C2) | 0.24 | 0.8944 | 3.99 | 66.0 | |
3 | AP (N0-C5) | 0.35 | 0.9663 | 5.78 | 80.6 | |
4 | AP (N0-C10) | 0.45 | 0.9286 | 7.56 | 87.0 | |
5 | AP (N0-C20) | 0.58 | 0.98 | 9.62 | 93.2 | |
6 | AP (N1-C2) | 0.28 | 0.9442 | 4.63 | 72.4 | |
7 | AP (N1-C5) | 0.42 | 0.9712 | 7.02 | 86.4 | |
8 | AP (N1-C10) | 0.53 | 0.9711 | 8.83 | 91.4 | |
9 | AP (N1-C20) | 0.60 | 0.9819 | 10.0 | 94.0 | |
10 | AP (N5-C2) | 0.31 | 0.9316 | 5.06 | 75.4 | |
11 | AP (N5-C5) | 0.43 | 0.9596 | 7.16 | 87.0 | |
12 | AP (N5-C10) | 0.55 | 0.9771 | 9.17 | 92.4 | |
13 | AP (N5-C20) | 0.61 | 0.9351 | 10.3 | 94.2 | |
14 | AP (N10-C2) | 0.34 | 0.9256 | 5.55 | 78.4 | |
15 | AP (N10-C5) | 0.45 | 0.9351 | 7.45 | 87.6 | |
16 | AP (N10-C10) | 0.57 | 0.9782 | 9.45 | 93.0 | |
17 | AP (N10-C20) | 0.64 | 0.936 | 10.7 | 95.0 | |
18 | AP (N20-C10) | 0.54 | 0.9769 | 9.00 | 91.6 | |
B. Effect of operation variables on the AP (N10-C10) photocatalytic performance | ||||||
Order | Parameter | Decay rate (min-1) | R2 | CADR (L min-1) | RE (%) | |
(1) FA concentration (ppm) | ||||||
19 | 0.5 | 1.14 | 0.9795 | 19.1 | 100 | |
20 | 1 | 0.80 | 0.9792 | 13.5 | 98.0 | |
21 | 3 | 0.67 | 0.9666 | 11.2 | 95.3 | |
22 | 5 | 0.57 | 0.9782 | 9.45 | 93.0 | |
(2) AP flow rate (L min-1) | ||||||
23 | 100 | 0.52 | 0.9943 | 8.73 | 92.0 | |
24 | 130 | 0.54 | 0.9901 | 9.07 | 92.6 | |
25 | 160 | 0.57 | 0.9782 | 9.45 | 93.0 | |
(3) Gas humidity (RH, %) | ||||||
26 | 0 | 0.57 | 0.9782 | 9.45 | 93.0 | |
27 | 20 | 0.31 | 0.9967 | 5.10 | 79.0 | |
28 | 50 | 0.21 | 0.9948 | 3.33 | 64.6 | |
29 | 100 | 0.14 | 0.983 | 2.24 | 49.6 |
Table 3 Photocatalytic performance analysis of the engineered AP (Nx-Cy) filters for FA removal under varying conditions based on the decay rate constants (k), CADR, and removal efficiency (RE%) criteria.
A. Types of photocatalytic filter | ||||||
---|---|---|---|---|---|---|
Order | Composites | Decay rate (min-1) | R2 | CADR (L min-1) | RE (%) | |
1 | AP (blank) | 0.01 | 0.9168 | —a | — a | |
2 | AP (N0-C2) | 0.24 | 0.8944 | 3.99 | 66.0 | |
3 | AP (N0-C5) | 0.35 | 0.9663 | 5.78 | 80.6 | |
4 | AP (N0-C10) | 0.45 | 0.9286 | 7.56 | 87.0 | |
5 | AP (N0-C20) | 0.58 | 0.98 | 9.62 | 93.2 | |
6 | AP (N1-C2) | 0.28 | 0.9442 | 4.63 | 72.4 | |
7 | AP (N1-C5) | 0.42 | 0.9712 | 7.02 | 86.4 | |
8 | AP (N1-C10) | 0.53 | 0.9711 | 8.83 | 91.4 | |
9 | AP (N1-C20) | 0.60 | 0.9819 | 10.0 | 94.0 | |
10 | AP (N5-C2) | 0.31 | 0.9316 | 5.06 | 75.4 | |
11 | AP (N5-C5) | 0.43 | 0.9596 | 7.16 | 87.0 | |
12 | AP (N5-C10) | 0.55 | 0.9771 | 9.17 | 92.4 | |
13 | AP (N5-C20) | 0.61 | 0.9351 | 10.3 | 94.2 | |
14 | AP (N10-C2) | 0.34 | 0.9256 | 5.55 | 78.4 | |
15 | AP (N10-C5) | 0.45 | 0.9351 | 7.45 | 87.6 | |
16 | AP (N10-C10) | 0.57 | 0.9782 | 9.45 | 93.0 | |
17 | AP (N10-C20) | 0.64 | 0.936 | 10.7 | 95.0 | |
18 | AP (N20-C10) | 0.54 | 0.9769 | 9.00 | 91.6 | |
B. Effect of operation variables on the AP (N10-C10) photocatalytic performance | ||||||
Order | Parameter | Decay rate (min-1) | R2 | CADR (L min-1) | RE (%) | |
(1) FA concentration (ppm) | ||||||
19 | 0.5 | 1.14 | 0.9795 | 19.1 | 100 | |
20 | 1 | 0.80 | 0.9792 | 13.5 | 98.0 | |
21 | 3 | 0.67 | 0.9666 | 11.2 | 95.3 | |
22 | 5 | 0.57 | 0.9782 | 9.45 | 93.0 | |
(2) AP flow rate (L min-1) | ||||||
23 | 100 | 0.52 | 0.9943 | 8.73 | 92.0 | |
24 | 130 | 0.54 | 0.9901 | 9.07 | 92.6 | |
25 | 160 | 0.57 | 0.9782 | 9.45 | 93.0 | |
(3) Gas humidity (RH, %) | ||||||
26 | 0 | 0.57 | 0.9782 | 9.45 | 93.0 | |
27 | 20 | 0.31 | 0.9967 | 5.10 | 79.0 | |
28 | 50 | 0.21 | 0.9948 | 3.33 | 64.6 | |
29 | 100 | 0.14 | 0.983 | 2.24 | 49.6 |
Fig. 7. The effects of process variables on the performance of AP (N10-C10) honeycomb filter. (a) FA concentration (0.5-5 ppm); (b) AP flow rate (100-160 L min-1); and (c) RH (0-100%).
Order | Photocatalyst | Light source | Mass of catalyst (mg) | Concentration (ppm) | Irradiation time (h) | Chamber volume (L) | Humidity (%) | Flow rate (L min-1) | Conversion (%) | ke (min-1) | CADR (L min-1) | n-CADR (L min-1 g-1) | Quantum yield (molecules photon-1) | Space-time yield (molecules photon-1 mg-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | TiO2/rGO | 30 W UV lamp | 200 | 1.00 | 6.00 | 216 | aNA | NA | 92.0 | 0.008 | 1.69* | 8.44* | 4.11.E-06 | 2.06.E-08 | [ |
2 | C3N4/TiO2 | 15 W UV lamp | 300 | 170 | 1.00 | 15.0 | NA | NA | 94.0 | 0.064 | 0.95* | 3.18* | 5.95.E-04 | 1.98.E-06 | [ |
3 | TiO2/sepiolite | 20 W UV lamp | 10000 | 6.68 | 12.0 | 500 | 45 | NA | 88.0 | 0.002 | 1.17* | 0.12* | 4.56.E-05 | 4.56.E-09 | [ |
4 | K/C3N4 | 420 W Xenon lamp | 100 | 300 | 0.53 | 6.00 | 51 | NA | 97.7 | 0.093 | 0.56* | 5.57* | 3.05.E-05 | 3.05.E-07 | [ |
5 | Ag/F/N/W-TiO2 | 25 W Blue light UV LED | 2000 | 4.00 | 2.00 | 216 | NA | NA | 88.1 | 0.018 | 3.96* | 1.98* | 4.71.E-05 | 2.35.E-08 | [ |
6 | AP (Pt@Cu/TiO2) | 1 W Air purifier UV-LED | 50 | 0.5 | 0.17 | 17.0 | < 1 | 160 | 100 | 0.925 | 15.9 | 318 | 1.94.E-04 | 3.88.E-06 | [ |
7 | AP (N10-C10) | 1 W Air purifier UV-LED | 59.9 | 5.00 | 0.08 | 17.0 | < 1 | 160 | 93.0 | 0.565 | 9.45 | 158 | 3.49.E-03 | 5.82.E-05 | This study |
Table 4 Comparison of the photocatalytic performance metrics of N-TiO2 photocatalysts (i.e., AP (N10-C10)) in this work with others reported previously.
Order | Photocatalyst | Light source | Mass of catalyst (mg) | Concentration (ppm) | Irradiation time (h) | Chamber volume (L) | Humidity (%) | Flow rate (L min-1) | Conversion (%) | ke (min-1) | CADR (L min-1) | n-CADR (L min-1 g-1) | Quantum yield (molecules photon-1) | Space-time yield (molecules photon-1 mg-1) | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | TiO2/rGO | 30 W UV lamp | 200 | 1.00 | 6.00 | 216 | aNA | NA | 92.0 | 0.008 | 1.69* | 8.44* | 4.11.E-06 | 2.06.E-08 | [ |
2 | C3N4/TiO2 | 15 W UV lamp | 300 | 170 | 1.00 | 15.0 | NA | NA | 94.0 | 0.064 | 0.95* | 3.18* | 5.95.E-04 | 1.98.E-06 | [ |
3 | TiO2/sepiolite | 20 W UV lamp | 10000 | 6.68 | 12.0 | 500 | 45 | NA | 88.0 | 0.002 | 1.17* | 0.12* | 4.56.E-05 | 4.56.E-09 | [ |
4 | K/C3N4 | 420 W Xenon lamp | 100 | 300 | 0.53 | 6.00 | 51 | NA | 97.7 | 0.093 | 0.56* | 5.57* | 3.05.E-05 | 3.05.E-07 | [ |
5 | Ag/F/N/W-TiO2 | 25 W Blue light UV LED | 2000 | 4.00 | 2.00 | 216 | NA | NA | 88.1 | 0.018 | 3.96* | 1.98* | 4.71.E-05 | 2.35.E-08 | [ |
6 | AP (Pt@Cu/TiO2) | 1 W Air purifier UV-LED | 50 | 0.5 | 0.17 | 17.0 | < 1 | 160 | 100 | 0.925 | 15.9 | 318 | 1.94.E-04 | 3.88.E-06 | [ |
7 | AP (N10-C10) | 1 W Air purifier UV-LED | 59.9 | 5.00 | 0.08 | 17.0 | < 1 | 160 | 93.0 | 0.565 | 9.45 | 158 | 3.49.E-03 | 5.82.E-05 | This study |
Fig. 9. The comparison of the characteristics of AP (Nx-C10; x = 0 and 10) before and after photocatalytic oxidation of FA. (a,b) Raman spectra; (c) XRD; (d) FTIR.
Fig. 11. The photocatalytic reaction of FA over AP (N10-C10). (a) Schematic for the photocatalytic mineralization pathway; (b) FA conversion efficiency (%) to CO2.
Fig. 12. Identified ROSs generated in the reaction mechanism. EPR signals of the DMPO-?OH (a) and DMPO-?O2 (b) by AP (Nx-C10) filters; (c) Gaseous scavenger test for ?1O2, ?O2-, and ?OH radicals during the photocatalytic degradation of FA (100 ppm) onto AP (N10-C10) filter under UV irradiation.
Fig. 13. Partial densities for chemically active Ti-atom on {101} surface of TiO2 without (a) and with (b) oxygen vacancies, without N-impurity (solid black line), with N-impurity before (solid red line) and after (dashed blue line) first step of conversion of FA molecules.
Fig. 14. Optimized atomic structures of the most energetically favorable steps of conversion FA and oxygen to CO2 and water on nitrogen-doped {110} and the surface of anatase TiO2 without oxygen vacancies (a-e) and {101} surface of anatase TiO2 with oxygen vacancy near nitrogen center (f-j). Panels (a) and (f) show the physical adsorption of FA and oxygen molecules near nitrogen defects. Panels (b-d) and (g-f) demonstrate intermediate steps corresponding with covalent attachment of the reactants and products to Ti3+ sites near nitrogen defects. Panels (e) and (j) show the final products of the reaction (carbon monoxide and water) non-covalently attached to catalytic surfaces.
Order | Reaction steps | Substrate (ΔH: kJ mol-1) | ||
---|---|---|---|---|
{110}+NO | {101}+NO | {101}+NO+OVs | ||
1 | FA + O2 adsorption | -79.6 | -69.2 | -78.1 |
2 | water adsorption | -74.9 | 116.6 | 121.2 |
3 | H2CO + O2 → *-OCH + *-OOH | 103.7 | -173.7 | -186.3 |
4 | *-CHO + *-OOH → *-CHOOH + *-O | -253.9 | -567.7 | -538.1 |
5 | *-CHOOH + *-O → *-COOH +*-OH | -519.1 | 79.2 | -95.3 |
6 | *-COOH +*-OH → CO2 + H2O | 98.3 | -192.8 | -53.5 |
7 | CO2 + H2O desorption | 150.8 | 108.6 | 114.1 |
Table 5 Calculated enthalpies (ΔH: kJ/mol) for the conversion reactions of FA to CO2 over {110} and {101} surfaces of anatase TiO2 with substitutional nitrogen impurity (No) and oxygen vacancies (OVs). An asterisk denotes the substrate.
Order | Reaction steps | Substrate (ΔH: kJ mol-1) | ||
---|---|---|---|---|
{110}+NO | {101}+NO | {101}+NO+OVs | ||
1 | FA + O2 adsorption | -79.6 | -69.2 | -78.1 |
2 | water adsorption | -74.9 | 116.6 | 121.2 |
3 | H2CO + O2 → *-OCH + *-OOH | 103.7 | -173.7 | -186.3 |
4 | *-CHO + *-OOH → *-CHOOH + *-O | -253.9 | -567.7 | -538.1 |
5 | *-CHOOH + *-O → *-COOH +*-OH | -519.1 | 79.2 | -95.3 |
6 | *-COOH +*-OH → CO2 + H2O | 98.3 | -192.8 | -53.5 |
7 | CO2 + H2O desorption | 150.8 | 108.6 | 114.1 |
|
[1] | 李洋, 王雄, 胡星盛, 胡彪, 田昇, 王丙昊, 陈浪, 陈广辉, 彭超, 申升, 尹双凤. 可循环Pd/TiO2构筑及其紫外光催化苯甲醛与碘苯偶联合成二苯甲酮[J]. 催化学报, 2024, 59(4): 159-168. |
[2] | 潘劲康, 张艾彩珺, 张莉华, 董鹏玉. 由质子化D-A型聚合物和MoS2构建S型异质结实现高效光催化析氢[J]. 催化学报, 2024, 58(3): 180-193. |
[3] | 井会娟, 龙军, 李欢, 傅笑言, 肖建平. 电催化硝酸盐还原合成氨电势相关性的计算见解[J]. 催化学报, 2023, 48(5): 205-213. |
[4] | 赵志月, 蒋志伟, 黄一哲, Mebrouka Boubeche, Valentina G. Matveeva, Hector F. Garces, 罗惠霞, 严凯. 富空穴CoSi合金无溶剂无碱醇氧化[J]. 催化学报, 2023, 48(5): 175-184. |
[5] | 林杉帆, 郅玉春, 张文娜, 袁小帅, 张成伟, 叶茂, 徐舒涛, 魏迎旭, 刘中民. 氢转移反应对分子筛催化甲醇和二甲醚动态自催化反应历程的贡献: 深入理解甲醛的生成机理和作用机制[J]. 催化学报, 2023, 46(3): 11-27. |
[6] | 李楠, 王传义, 章柯, 吕海钦, 苑明哲, Detlef W. Bahnemann. 光催化转化低浓度NO的进展与展望[J]. 催化学报, 2022, 43(9): 2363-2387. |
[7] | Ernest Pahuyo Delmo, 王忆安, 王菁, 朱尚乾, 李铁怀, 秦雪苹, 田一博, 赵青蓝, Juhee Jang, 王一诺, 谷猛, 张莉莉, 邵敏华. 金属有机框架-离子液体混合催化剂用于电化学还原二氧化碳生成甲烷[J]. 催化学报, 2022, 43(7): 1687-1696. |
[8] | Muhammad Tayyab, 刘玉洁, 敏世雄, Rana Muhammad Irfan, 朱乔虹, 周亮, 雷菊英, 张金龙. 无贵金属光催化剂VC/CdS纳米线将苯甲醇选择性氧化为苯甲醛并产氢[J]. 催化学报, 2022, 43(4): 1165-1175. |
[9] | 高海峡, 刘康, 罗涛, 陈羽, 胡俊华, 傅俊伟, 刘敏. 单原子Co位点的CO2还原反应路径:局部配位环境的影响[J]. 催化学报, 2022, 43(3): 832-838. |
[10] | 邓长顺, 崔韵, 陈俊超, 陈腾, 郭学锋, 季伟捷, 彭路明, 丁维平. 烷基膦酸键合的纳米氧化物上甲苯选择氧化制苯甲醛的类酶机理[J]. 催化学报, 2021, 42(9): 1509-1518. |
[11] | 王森, 李志凯, 秦张峰, 董梅, 李俊汾, 樊卫斌, 王建国. H-ZSM-5分子筛不同孔道处的酸位在甲醇制烯烃反应中的催化作用[J]. 催化学报, 2021, 42(7): 1126-1136. |
[12] | 钟静萍, 黄科薪, 许文涛, 唐华果, Muhammad Waqas, 樊友军, 王睿翔, 陈卫, 王沂轩. 导电共聚物衍化新策略制备硫、氮共掺杂碳纳米管及其对改善PtCu纳米晶分散性与甲醇电催化氧化的促进作用[J]. 催化学报, 2021, 42(7): 1205-1215. |
[13] | 吴倩, 高庆平, 孙丽梅, 郭焕美, 台夕市, 李丹, 刘莉, 凌崇益, 孙旭平. CeO2修饰Ni3S2纳米片用于高效电催化析氧[J]. 催化学报, 2021, 42(3): 482-489. |
[14] | 马晓旭, 邱盟峯, 葛亮, 李晓岩, 李亚军, 吴莉, 鲍红丽. 酞菁铁催化烯烃自由基膦叠氮化反应: 利用叠氮快速转移合成膦叠氮的温和方法[J]. 催化学报, 2021, 42(10): 1634-1640. |
[15] | Ya-Qiong Su, Long Zhang, Valery Muravev, Emiel J. M. Hensen. 过渡金属掺杂铈中晶格氧的活化[J]. 催化学报, 2020, 41(6): 977-984. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||