催化学报 ›› 2024, Vol. 59: 293-302.DOI: 10.1016/S1872-2067(23)64618-2

• 论文 • 上一篇    下一篇

理论指导构建Cu-O-Ti-Ov活性位点及其高效电催化还原硝酸根研究

聂翼飞a,1, 颜红萍a,1, 鹿苏微a, 张宏伟a, 齐婷婷a,*(), 梁诗景a,b,*(), 江莉龙a,b   

  1. a福州大学化肥催化剂国家工程研究中心, 福建福州 350002
    b清源创新实验室, 福建泉州 362801
  • 收稿日期:2024-01-04 接受日期:2024-02-04 出版日期:2024-04-18 发布日期:2024-04-15
  • 通讯作者: *电子邮箱: qtt@fzu.edu.cn (齐婷婷), sjliang2012@fzu.edu.cn (梁诗景).
  • 作者简介:

    1共同第一作者.

  • 基金资助:
    国家自然科学基金(22221005);国家自然科学基金(22378060);国家重点研发计划(2021YFB3801600)

Theory-guided construction of Cu-O-Ti-Ov active sites on Cu/TiO2 catalysts for efficient electrocatalytic nitrate reduction

Yifei Niea,1, Hongping Yana,1, Suwei Lua, Hongwei Zhanga, Tingting Qia,*(), Shijing Lianga,b,*(), Lilong Jianga,b   

  1. aNational Engineering Research Center of Chemical Fertilizer Catalyst Fuzhou University, Fuzhou 350002, Fujian, China
    bQingyuan Innovation Laboratory, Quanzhou 362801, Fujian, China
  • Received:2024-01-04 Accepted:2024-02-04 Online:2024-04-18 Published:2024-04-15
  • Contact: *E-mail: qtt@fzu.edu.cn (T. Qi), sjliang2012@fzu.edu.cn (S. Liang).
  • About author:

    1 Contributed equally to this work.

  • Supported by:
    The National Natural Science Foundation of China(22221005);The National Natural Science Foundation of China(22378060);The National Key R&D Program of China(2021YFB3801600)

摘要:

面向国家绿色低碳战略目标, 变革化石资源合成氨技术路线变得尤为迫切, 开发可再生能源制“绿氨”将成为合成氨领域未来的重要发展方向. 将工业废水中的硝酸根(NO3-)电催化还原为氨(NO3RR), 既可有效回收氨, 又能消除硝酸根污染影响. 然而, NO3RR涉及缓慢的八电子转移过程, 含有多种反应中间体, 其反应机理复杂不明. 此外, 水系电解液中存在的析氢竞争反应也为高效NO3RR催化剂的开发设计带来了巨大的挑战. 为突破高效催化剂的发展瓶颈, 本文通过理论模拟, 在低成本的催化剂上设计了高效的NO3RR催化活性位点, 并利用简单的制备策略合成了目标催化剂. 同时, 结合原位表征技术, 阐明了NO3RR的反应路径及催化机理.

本文通过密度泛函理论(DFT)计算发现, Cu/TiO2催化剂上的Cu-O-Ti-Ov结构具有较好的NO3-还原活性, 该结构不仅能够促进反应中间体NOx-的吸附和活化, 还能有效抑制竞争析氢反应, 从而降低NO3RR的反应能垒. 在该结构上, NO3RR的反应路径为: NO3* → NO2* → HONO* → NO**NOH → *N → *NH → *NH2*NH3 → NH3. 基于理论计算结果, 分别采用浸渍法和尿素水解法制备了系列富含Cu-O-Ti-Ov结构的Cu/TiO2催化剂. 氮气等温吸附-脱附曲线、拉曼光谱(Raman)、电子顺磁共振波谱、X射线光电子能谱(XPS)和傅立叶红外光谱等结果发现, 相比于采用浸渍法制备的系列Cu/TiO2催化剂, 采用尿素水解法制备的Cu/TiO2(CT-U)催化剂具有更大的比表面积以及更多的Cu-O-Ti-Ov位点, 说明尿素水解法可提高Cu颗粒在TiO2载体表面的分散度, 增强Cu颗粒与TiO2载体之间的相互作用, 提高Cu/TiO2催化剂表面的Cu-O-Ti-Ov位点含量. 将以上制备出的催化剂应用于催化NO3RR中, 结果表明, 在-1.0 V vs. RHE还原电位下, CT-U催化剂上氨产率可达3046.5 μg h-1 mgcat-1, 高于大多数文献报道结果. 循环稳定性测试结果表明, 在Cu/TiO2催化剂上构建Cu-O-Ti-Ov位点还能显著抑制电催化反应过程中Cu物种从Cu/TiO2催化剂上溶出, 从而显著增强催化剂的稳定性. 此外, 设计制备了不含氧空位的Cu/TiO2, TiO2-x, Cu, Cu2O以及CuO催化剂, 并将其用于催化NO3RR. 结果发现, 上述催化剂上的氨产率皆明显低于CT-U催化剂, 说明Cu, Ti以及Ov构成的Cu-O-Ti-Ov结构具有较好的催化协同作用, 从而显著提升了NO3RR反应活性. 最后, 通过原位Raman及原位XPS表征检测反应中间体, 验证了由DFT模拟出的NO3RR反应路径.

综上, 通过在Cu/TiO2催化剂上理论指导构建Cu-O-Ti-Ov活性位点, 实现了NO3RR性能的有效提升. Cu-O-Ti-Ov结构中的多位点协同作用不仅促进了NOx-的吸附和活化, 而且抑制了电催化过程中Cu物种从催化剂上的溶出, 从而提高了催化剂的稳定性. 本研究为设计高效稳定的NO3RR催化剂提供了新思路.

关键词: 电催化硝酸盐还原, 合成氨, Cu-O-Ti-Ov位点, 协同催化, Cu/TiO2催化剂

Abstract:

Electrocatalytic nitrate reduction reaction (NO3RR) has been capturing immense interest in the industrial application of ammonia synthesis, and it involves complex reaction routes accompanied by multi-electron transfer, thus causing a challenge to achieve high efficiency for catalysts. Herein, we customized the Cu-O-Ti-Ov (oxygen vacancy) structure on the Cu/TiO2 catalyst, identified through density functional theory (DFT) calculations as the synergic active site for NO3RR. It is found that Cu-O-Ti-Ov site facilitates the adsorption/association of NOx- and promotes the hydrogenation of NO3- to NH3 via adsorbed *H species. This effectively suppresses the competing hydrogen evolution reaction (HER) and exhibits a lower reaction energy barrier for NO3RR, with the reaction pathways: NO3* → NO2* → HONO* → NO**NOH → *N → *NH → *NH2*NH3 → NH3. The optimized Cu/TiO2 catalyst with rich Cu-O-Ti-Ov sites achieves an NH3 yield rate of 3046.5 μg h-1 mgcat-1 at -1.0 V vs. RHE, outperforming most of the reported activities. Furthermore, the construction of Cu-O-Ti-Ov sites significantly mitigates the leaching of Cu species, enhancing the stability of the Cu/TiO2 catalyst. Additionally, a mechanistic study, using in situ characterizations and various comparative experiments, further confirms the strong synergy between Cu, Ti, and Ov sites, which is consistent with previous DFT calculations. This study provides a new strategy for designing efficient and stable electrocatalysts in the field of ammonia synthesis.

Key words: Electrocatalytic nitrate reduction, Ammonia synthesis, Cu-O-Ti-Ov site, Synergic catalytic effect, Cu/TiO2 catalyst