催化学报 ›› 2021, Vol. 42 ›› Issue (7): 1078-1095.DOI: 10.1016/S1872-2067(20)63721-4
魏龙福a, 余长林a,*(), 杨凯b, 樊启哲a, 纪红兵a,#(
)
收稿日期:
2020-09-14
接受日期:
2020-10-09
出版日期:
2021-07-18
发布日期:
2020-12-10
通讯作者:
余长林,纪红兵
基金资助:
Longfu Weia, Changlin Yua,*(), Kai Yangb, Qizhe Fana, Hongbing Jia,#(
)
Received:
2020-09-14
Accepted:
2020-10-09
Online:
2021-07-18
Published:
2020-12-10
Contact:
Changlin Yu,Hongbing Ji
About author:
# E-mail: jihb@mail.sysu.edu.cnSupported by:
摘要:
随着社会和经济的快速发展, 环境污染和能源短缺等问题, 尤其是空气污染, 已经影响了人类的可持续发展. 挥发性有机化合物(VOCs), 如苯、甲苯、甲醛和丙酮是主要的空气污染物, 它们主要来源于油漆、有机化学品、石油化工产品、药物和工业生产过程. 大多VOCs具有特殊的气味, 而且具有一定的毒性、致畸性和致癌作用, 尤其是苯、甲苯和甲醛等, 会对人类的身体健康产生巨大的负面作用. 因此, 研发新型高效VOCs处理技术迫在眉睫. 除VOCs外, CO也是非常常见的空气污染物, 在室温条件下, 它无色无味, 没有刺激性且易燃易爆. CO主要来源于煤和石油等含碳材料的不完全燃烧. 在日常生活中很容易被排放到大气中. 在室温下, CO分子是非常稳定的, 很难与其它气体分子发生化学反应. 因此, CO的活化和转化是一项具有挑战性的工作.
催化氧化技术是在催化剂存在的条件下进行的氧化反应, 可以将VOCs直接氧化成为无毒无害的CO2和H2O, 也可将CO氧化成CO2. 光催化技术是一种新型的环境友好型技术, 可在常温常压下进行, 反应条件温和、能耗小、操作简单, 成本低, 氧化产物为无毒无害物质, 以及不存在二次污染等优点. 但光催化反应效率较低, 主要通过入射光的能量驱动化学反应. 热催化则通过升温的方法来驱动化学反应. 目前, 热催化剂主要为贵金属型催化剂, 其具有催化活性较高, 选择性较好且不存在二次污染等优点. 但高能耗影响产物的稳定性和选择性, 此外, 贵金属的使用导致成本增加. 光热协同催化可以整合光催化和热催化的优势, 并弥补各自的不足, 形成一种协同效应, 是一种新颖的催化反应.
目前, 关于光催化或热催化高效去除VOCs和CO的综述较多, 但很少有关于光热协同催化高效去除VOCs和CO的综述. 本综述重点讨论光热协同催化高效去除VOCs和CO的最新研究进展. 首先, 介绍了光热协同催化的概况, 如设计光热催化材料和催化反应器等. 其次, 重点介绍苯、甲苯、乙醇、甲醛、乙醛和丙酮等几种典型VOCs的光热协同催化的最新研究进展. 再次, 总结了光热协同催化CO加氢和氧化的最新研究进展. 此外, 还探讨了光热协同催化去除VOCs和CO的可能反应机理. 最后, 对光热协同催化的应用前景进行了展望.
魏龙福, 余长林, 杨凯, 樊启哲, 纪红兵. 光热协同催化去除挥发性有机化合物和CO的研究进展[J]. 催化学报, 2021, 42(7): 1078-1095.
Longfu Wei, Changlin Yu, Kai Yang, Qizhe Fan, Hongbing Ji. Recent advances in VOCs and CO removal via photothermal synergistic catalysis[J]. Chinese Journal of Catalysis, 2021, 42(7): 1078-1095.
Fig. 2. Schematic of a typical photothermal synergistic catalytic setup. Reprinted with permission from Ref. [63]. Copyright (2015) American Chemical Society.
Catalyst | VOCs | Light source | PC activity | TC activity | PTC activity | Ref. | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T/°C | t/min | C/% | T/°C | t/min | C/% | T/°C | t/min | C/% | ||||||||||||||||||||
Anatase TiO2 {001} | benzene | Hg | RT | 65 | 42 | — | — | — | 290 | 65 | 78 | [ | ||||||||||||||||
Rutile TiO2 | benzene | UV | RT | 160 | 50 | 280 | 160 | 18 | 280 | 160 | 70 | [ | ||||||||||||||||
TiO2 | benzene | UV | 40 | 60 | 40 | 240 | 60 | 15 | 240 | 60 | 100 | [ | ||||||||||||||||
0.1 wt% Pt/TiO2 | benzene | UV | — | — | — | 240 | 60 | 89 | 240 | 30 | 100 | [ | ||||||||||||||||
TiO2 | benzene | fluorescent black light bulb | — | — | — | 140 | 300 | 30 | 140 | 300 | 86 | [ | ||||||||||||||||
0.1 wt% Pt/TiO2 | benzene | fluorescent black light bulb | — | — | — | 70 | 120 | 8 | 70 | 120 | 100 | [ | ||||||||||||||||
Zr-doped Pt/TiO2 | benzene | UV | 50 | 150 | 65 | 200 | 150 | 43 | 200 | 150 | 97 | [ | ||||||||||||||||
Pt-loaded TiO2/ZrO2 | benzene | Germicidal lamps | — | — | — | — | — | — | 150 | 960 | 100 | [ | ||||||||||||||||
MnO2 | benzene | Xe | — | — | — | — | — | — | — | 30 | 100 | [ | ||||||||||||||||
Co3O4 | benzene | Xe | — | — | — | — | — | — | — | 40 | 100 | [ | ||||||||||||||||
MnxFeOy-70 | benzene | Xe | — | — | — | — | — | — | 244 | 25 | 100 | [ | ||||||||||||||||
Catalyst | VOCs | Light source | PC activity | TC activity | PTC activity | Ref. | ||||||||||||||||||||||
T/°C | t/min | C/% | T/°C | t/min | C/% | T/°C | t/min | C/% | ||||||||||||||||||||
Pt/CeO2-MM | benzene | Xe | — | — | — | — | — | — | — | 25 | 100 | [ | ||||||||||||||||
Pt/BiVO4/TiO2 | benzene | Xe | 30 | — | 8 | 80 | — | 28 | 80 | — | 100 | [ | ||||||||||||||||
Pt/LaVO4/TiO2 | benzene | Xe | 30 | — | 12 | 70 | — | 20 | 70 | — | 100 | [ | ||||||||||||||||
Pt-TiO2/CeO2-MnO2 | benzene | UV | — | — | — | — | — | — | — | 600 | 94.5 | [ | ||||||||||||||||
Pt-TiO2/Ce-MnOx | benzene | germicidal lamps | — | — | — | — | — | — | 180 | 720 | 100 | [ | ||||||||||||||||
TiO2/CeO2 | benzene | Xe | — | — | — | — | — | — | — | 60 | 82 | [ | ||||||||||||||||
Co3O4/TiO2 | benzene | UV-vis-IR | RT | 40 | 48 | 240 | 40 | 80 | — | 40 | 95 | [ | ||||||||||||||||
MnOx/TiO2 | benzene | Xe | 40 | 40 | 81 | 300 | 40 | 50 | — | 40 | 96.5 | [ | ||||||||||||||||
CeMnxOy/TiO2 | benzene | Xe | 40 | — | — | — | — | — | 250 | 20 | 100 | [ | ||||||||||||||||
OMS-2 | benzene | Xe | RT | 25 | 18 | — | — | — | — | 30 | 100 | [ | ||||||||||||||||
Mg-OMS-2 | benzene | Xe | — | — | — | 202 | — | 50 | 220 | 30 | 97.2 | [ | ||||||||||||||||
Fe-OMS-2 | benzene | Xe | — | — | — | 224 | — | 50 | 217 | 30 | 98.8 | [ | ||||||||||||||||
Ce-OMS-2 | benzene | Xe | RT | 20 | 0 | 180 | — | 70 | — | 20 | 100 | [ | ||||||||||||||||
CeO2/OMS-2 | benzene | Xe | — | — | — | 180 | — | 10 | — | 20 | 60 | [ | ||||||||||||||||
OMS-2/SnO2 | benzene | UV-vis-IR | — | — | — | 225 | — | 50 | — | 60 | 88 | [ | ||||||||||||||||
Ag/F-SrTiO3 | benzene | Xe | — | — | — | — | — | — | 90 | 360 | >95 | [ | ||||||||||||||||
Ag/F-SrTiO3 | toluene | Xe | RT | 120 | 50 | 90 | 120 | 14 | 90 | 120 | 85 | [ | ||||||||||||||||
Ag/F-SrTiO3 | xylene | Xe | — | — | — | — | — | — | 90 | 360 | >95 | [ | ||||||||||||||||
Pd-CeO2 | toluene | Xe | 177 | — | 50 | 222 | — | 50 | 227 | — | 82 | [ | ||||||||||||||||
Pt/γ-Al2O3 | toluene | simulated sunlight | — | — | — | — | — | — | 165 | 20 | 87 | [ | ||||||||||||||||
Mn, Ce and Co oxides/Al2O3 | toluene | UV | — | — | — | 250 | 300 | 61 | 250 | 300 | 84 | [ | ||||||||||||||||
SiO2@Pt@ZrO2 | toluene | Xe | RT | 60 | 18 | 150 | 60 | 80 | 150 | 60 | 100 | [ | ||||||||||||||||
Pd-Ag@CeO2 | toluene | Xe | — | — | — | 130 | — | 50 | 88 | — | 50 | [ | ||||||||||||||||
Ag3PO4/Ag/SrTiO3 | toluene | Xe | RT | 360 | 90 | 90 | 180 | 13 | 90 | 180 | 92 | [ | ||||||||||||||||
Pt-La2O3/TiO2 | toluene | Xe | 25 | — | 85 | 150 | — | 25 | 150 | — | 100 | [ | ||||||||||||||||
Pt-rGO-TiO2 | toluene | IR light | — | — | — | — | — | — | — | — | 95 | [ | ||||||||||||||||
Pt-Na/TiO2 | toluene | Xe | — | — | — | 150 | — | 31 | 150 | — | 82 | [ | ||||||||||||||||
Ce-OMS-2 | toluene | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
CeO2/LaMnO3 | toluene | IR light | — | — | — | — | — | — | — | — | 89 | [ | ||||||||||||||||
NiCo2O4 | toluene | simulated sunlight | — | — | — | — | — | — | — | — | 93 | [ | ||||||||||||||||
LaSmMnNiO6 | toluene | Xe | — | — | — | — | — | — | 275 | — | 100 | [ | ||||||||||||||||
Au/TiO2 | ethanol | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Pt/TiO2 | ethanol | UV | — | — | — | 200 | — | 18 | 200 | — | 100 | [ | ||||||||||||||||
MnOx-CeO2 | formaldehyde | Xe | 25 | 180 | 42.3 | 75 | 180 | 27.1 | 75 | 180 | 90.4 | [ | ||||||||||||||||
MnOx/Co3O4 | formaldehyde | Xe | 25 | 180 | 20 | 80 | 180 | 36 | 80 | 180 | 84 | [ | ||||||||||||||||
graphene/MnO2 | formaldehyde | Xe | — | — | — | — | 40 | 80 | — | 40 | 88 | [ | ||||||||||||||||
BiOI | formaldehyde | Xe | RT | 45 | 70 | 60 | 45 | 37.8 | 60 | 45 | 88.9 | [ | ||||||||||||||||
Pt-TiO2/SiO2 | formaldehyde | UV | — | — | — | — | — | — | 107 | 300 | 100 | [ | ||||||||||||||||
CrxO/TiO2 | acetaldehyde | blue LED | — | — | — | — | — | — | 60 | 120 | 100 | [ | ||||||||||||||||
WO3-x | acetaldehyde | UV | — | — | — | — | — | — | 60 | 80 | 100 | [ | ||||||||||||||||
OMS-2 | acetone | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Ce-OMS-2 | acetone | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Pt/CeO2-MM | acetone | Xe | — | — | — | — | — | — | — | 20 | 95 | [ | ||||||||||||||||
nano ZnO | acetone | Hg | — | — | — | — | — | — | 240 | — | 100 | [ | ||||||||||||||||
Pt/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 34 | 90 | — | 100 | [ | ||||||||||||||||
Pd/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 19.2 | 90 | — | 100 | [ | ||||||||||||||||
Au/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 4.5 | 90 | — | 94.9 | [ | ||||||||||||||||
SS-Co3O4 | propylene | Xe | — | — | — | — | — | — | — | 10 | 100 | [ | ||||||||||||||||
SS-Co3O4 | propane | Xe | — | — | — | — | — | — | — | 15 | 100 | [ | ||||||||||||||||
manganese oxide | propylene | Xe | — | — | — | — | — | — | 205 | — | 90 | [ | ||||||||||||||||
manganese oxide | propane | Xe | — | — | — | — | — | — | 263 | — | 90 | [ | ||||||||||||||||
Pt/TiO2-WO3 | propane | UV/Vis | — | — | — | 324 | — | 70 | 90 | — | 70 | [ | ||||||||||||||||
PtCu/CeO2 | n-pentane | Xe | 30 | 120 | 5 | 400 | 120 | 80 | 400 | 120 | 95 | [ | ||||||||||||||||
LaMnO3 | styrene | Xe | RT | 40 | 25 | 140 | 40 | 68 | 140 | 40 | 96.6 | [ |
Table 1 Summary and comparison of the performance of photocatalytic (PC), thermocatalytic (TC), and PTC degradation of VOCs.
Catalyst | VOCs | Light source | PC activity | TC activity | PTC activity | Ref. | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T/°C | t/min | C/% | T/°C | t/min | C/% | T/°C | t/min | C/% | ||||||||||||||||||||
Anatase TiO2 {001} | benzene | Hg | RT | 65 | 42 | — | — | — | 290 | 65 | 78 | [ | ||||||||||||||||
Rutile TiO2 | benzene | UV | RT | 160 | 50 | 280 | 160 | 18 | 280 | 160 | 70 | [ | ||||||||||||||||
TiO2 | benzene | UV | 40 | 60 | 40 | 240 | 60 | 15 | 240 | 60 | 100 | [ | ||||||||||||||||
0.1 wt% Pt/TiO2 | benzene | UV | — | — | — | 240 | 60 | 89 | 240 | 30 | 100 | [ | ||||||||||||||||
TiO2 | benzene | fluorescent black light bulb | — | — | — | 140 | 300 | 30 | 140 | 300 | 86 | [ | ||||||||||||||||
0.1 wt% Pt/TiO2 | benzene | fluorescent black light bulb | — | — | — | 70 | 120 | 8 | 70 | 120 | 100 | [ | ||||||||||||||||
Zr-doped Pt/TiO2 | benzene | UV | 50 | 150 | 65 | 200 | 150 | 43 | 200 | 150 | 97 | [ | ||||||||||||||||
Pt-loaded TiO2/ZrO2 | benzene | Germicidal lamps | — | — | — | — | — | — | 150 | 960 | 100 | [ | ||||||||||||||||
MnO2 | benzene | Xe | — | — | — | — | — | — | — | 30 | 100 | [ | ||||||||||||||||
Co3O4 | benzene | Xe | — | — | — | — | — | — | — | 40 | 100 | [ | ||||||||||||||||
MnxFeOy-70 | benzene | Xe | — | — | — | — | — | — | 244 | 25 | 100 | [ | ||||||||||||||||
Catalyst | VOCs | Light source | PC activity | TC activity | PTC activity | Ref. | ||||||||||||||||||||||
T/°C | t/min | C/% | T/°C | t/min | C/% | T/°C | t/min | C/% | ||||||||||||||||||||
Pt/CeO2-MM | benzene | Xe | — | — | — | — | — | — | — | 25 | 100 | [ | ||||||||||||||||
Pt/BiVO4/TiO2 | benzene | Xe | 30 | — | 8 | 80 | — | 28 | 80 | — | 100 | [ | ||||||||||||||||
Pt/LaVO4/TiO2 | benzene | Xe | 30 | — | 12 | 70 | — | 20 | 70 | — | 100 | [ | ||||||||||||||||
Pt-TiO2/CeO2-MnO2 | benzene | UV | — | — | — | — | — | — | — | 600 | 94.5 | [ | ||||||||||||||||
Pt-TiO2/Ce-MnOx | benzene | germicidal lamps | — | — | — | — | — | — | 180 | 720 | 100 | [ | ||||||||||||||||
TiO2/CeO2 | benzene | Xe | — | — | — | — | — | — | — | 60 | 82 | [ | ||||||||||||||||
Co3O4/TiO2 | benzene | UV-vis-IR | RT | 40 | 48 | 240 | 40 | 80 | — | 40 | 95 | [ | ||||||||||||||||
MnOx/TiO2 | benzene | Xe | 40 | 40 | 81 | 300 | 40 | 50 | — | 40 | 96.5 | [ | ||||||||||||||||
CeMnxOy/TiO2 | benzene | Xe | 40 | — | — | — | — | — | 250 | 20 | 100 | [ | ||||||||||||||||
OMS-2 | benzene | Xe | RT | 25 | 18 | — | — | — | — | 30 | 100 | [ | ||||||||||||||||
Mg-OMS-2 | benzene | Xe | — | — | — | 202 | — | 50 | 220 | 30 | 97.2 | [ | ||||||||||||||||
Fe-OMS-2 | benzene | Xe | — | — | — | 224 | — | 50 | 217 | 30 | 98.8 | [ | ||||||||||||||||
Ce-OMS-2 | benzene | Xe | RT | 20 | 0 | 180 | — | 70 | — | 20 | 100 | [ | ||||||||||||||||
CeO2/OMS-2 | benzene | Xe | — | — | — | 180 | — | 10 | — | 20 | 60 | [ | ||||||||||||||||
OMS-2/SnO2 | benzene | UV-vis-IR | — | — | — | 225 | — | 50 | — | 60 | 88 | [ | ||||||||||||||||
Ag/F-SrTiO3 | benzene | Xe | — | — | — | — | — | — | 90 | 360 | >95 | [ | ||||||||||||||||
Ag/F-SrTiO3 | toluene | Xe | RT | 120 | 50 | 90 | 120 | 14 | 90 | 120 | 85 | [ | ||||||||||||||||
Ag/F-SrTiO3 | xylene | Xe | — | — | — | — | — | — | 90 | 360 | >95 | [ | ||||||||||||||||
Pd-CeO2 | toluene | Xe | 177 | — | 50 | 222 | — | 50 | 227 | — | 82 | [ | ||||||||||||||||
Pt/γ-Al2O3 | toluene | simulated sunlight | — | — | — | — | — | — | 165 | 20 | 87 | [ | ||||||||||||||||
Mn, Ce and Co oxides/Al2O3 | toluene | UV | — | — | — | 250 | 300 | 61 | 250 | 300 | 84 | [ | ||||||||||||||||
SiO2@Pt@ZrO2 | toluene | Xe | RT | 60 | 18 | 150 | 60 | 80 | 150 | 60 | 100 | [ | ||||||||||||||||
Pd-Ag@CeO2 | toluene | Xe | — | — | — | 130 | — | 50 | 88 | — | 50 | [ | ||||||||||||||||
Ag3PO4/Ag/SrTiO3 | toluene | Xe | RT | 360 | 90 | 90 | 180 | 13 | 90 | 180 | 92 | [ | ||||||||||||||||
Pt-La2O3/TiO2 | toluene | Xe | 25 | — | 85 | 150 | — | 25 | 150 | — | 100 | [ | ||||||||||||||||
Pt-rGO-TiO2 | toluene | IR light | — | — | — | — | — | — | — | — | 95 | [ | ||||||||||||||||
Pt-Na/TiO2 | toluene | Xe | — | — | — | 150 | — | 31 | 150 | — | 82 | [ | ||||||||||||||||
Ce-OMS-2 | toluene | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
CeO2/LaMnO3 | toluene | IR light | — | — | — | — | — | — | — | — | 89 | [ | ||||||||||||||||
NiCo2O4 | toluene | simulated sunlight | — | — | — | — | — | — | — | — | 93 | [ | ||||||||||||||||
LaSmMnNiO6 | toluene | Xe | — | — | — | — | — | — | 275 | — | 100 | [ | ||||||||||||||||
Au/TiO2 | ethanol | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Pt/TiO2 | ethanol | UV | — | — | — | 200 | — | 18 | 200 | — | 100 | [ | ||||||||||||||||
MnOx-CeO2 | formaldehyde | Xe | 25 | 180 | 42.3 | 75 | 180 | 27.1 | 75 | 180 | 90.4 | [ | ||||||||||||||||
MnOx/Co3O4 | formaldehyde | Xe | 25 | 180 | 20 | 80 | 180 | 36 | 80 | 180 | 84 | [ | ||||||||||||||||
graphene/MnO2 | formaldehyde | Xe | — | — | — | — | 40 | 80 | — | 40 | 88 | [ | ||||||||||||||||
BiOI | formaldehyde | Xe | RT | 45 | 70 | 60 | 45 | 37.8 | 60 | 45 | 88.9 | [ | ||||||||||||||||
Pt-TiO2/SiO2 | formaldehyde | UV | — | — | — | — | — | — | 107 | 300 | 100 | [ | ||||||||||||||||
CrxO/TiO2 | acetaldehyde | blue LED | — | — | — | — | — | — | 60 | 120 | 100 | [ | ||||||||||||||||
WO3-x | acetaldehyde | UV | — | — | — | — | — | — | 60 | 80 | 100 | [ | ||||||||||||||||
OMS-2 | acetone | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Ce-OMS-2 | acetone | Xe | — | — | — | — | — | — | — | — | — | [ | ||||||||||||||||
Pt/CeO2-MM | acetone | Xe | — | — | — | — | — | — | — | 20 | 95 | [ | ||||||||||||||||
nano ZnO | acetone | Hg | — | — | — | — | — | — | 240 | — | 100 | [ | ||||||||||||||||
Pt/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 34 | 90 | — | 100 | [ | ||||||||||||||||
Pd/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 19.2 | 90 | — | 100 | [ | ||||||||||||||||
Au/TiO2/Silica | ethylene | UV | — | — | — | 90 | — | 4.5 | 90 | — | 94.9 | [ | ||||||||||||||||
SS-Co3O4 | propylene | Xe | — | — | — | — | — | — | — | 10 | 100 | [ | ||||||||||||||||
SS-Co3O4 | propane | Xe | — | — | — | — | — | — | — | 15 | 100 | [ | ||||||||||||||||
manganese oxide | propylene | Xe | — | — | — | — | — | — | 205 | — | 90 | [ | ||||||||||||||||
manganese oxide | propane | Xe | — | — | — | — | — | — | 263 | — | 90 | [ | ||||||||||||||||
Pt/TiO2-WO3 | propane | UV/Vis | — | — | — | 324 | — | 70 | 90 | — | 70 | [ | ||||||||||||||||
PtCu/CeO2 | n-pentane | Xe | 30 | 120 | 5 | 400 | 120 | 80 | 400 | 120 | 95 | [ | ||||||||||||||||
LaMnO3 | styrene | Xe | RT | 40 | 25 | 140 | 40 | 68 | 140 | 40 | 96.6 | [ |
Fig. 3. (a) Change in benzene concentration with time; (b) CO2 production rate from benzene in photocatalytic, thermocatalytic, and photothermocatalytic systems. Reprinted with permission from Ref. [70]. Copyright (2016) Elsevier.
Fig. 4. Schematic of photothermal synergistic catalysis for benzene oxidation on Pt-loaded TiO2/ZrO2 catalyst. Reprinted with permission from Ref. [75]. Copyright 2012, Elsevier.
Fig. 5. Scanning electron microscopy images (a,b) and high-resolution transmission electron microscopy image (c) of R-MnO2-HS; (d) CO2 concentration and benzene conversion (concentration/initial concentration (C/C0)) over R-MnO2-HS and TiO2 (P25) catalysts under full solar spectrum irradiation. Reprinted with permission from Ref. [77]. Copyright (2019) American Chemical Society.
Fig. 7. Schematic of photothermal synergistic catalysis for benzene oxidation over TiO2/CeO2 (a) and Co3O4/TiO2 (b) catalysts. (a) Reprinted with permission from Ref. [63]. Copyright 2015, American Chemical Society; (b) Reprinted with permission from Ref. [97]. Copyright (2018) American Chemical Society.
Fig. 8. Schematic of photothermal synergistic catalysis over the OMS-2 catalyst. Reprinted with permission from Ref. [100]. Copyright (2015) Elsevier.
Fig. 9. (a) UV-vis absorption spectra of the catalysts; (b) Schematic illustration of photothermal synergistic catalysis for VOCs on Ag/F-codoped SrTiO3 catalysts. Reprinted with permission from Ref. [105]. Copyright (2018) American Chemical Society.
Fig. 10. Schematic of photothermal synergistic catalysis for VOCs degradation over a Pt/γ-Al2O3 catalyst. Reprinted with permission from Ref. [107]. Copyright (2018) American Chemical Society.
Fig. 11. (a) Synthesis of core/shell SiO2@Pt@ZrO2 nanostructures; (b) High-resolution transmission electron microscopy image of the SiO2@Pt@ZrO2 catalyst; (c) Schematic of photothermal synergistic catalysis over the SiO2@Pt@ZrO2 catalyst for VOCs removal. Reprinted with permission from Ref. [110]. Copyright (2019) American Chemical Society.
Fig. 12. Schematic of photothermal synergistic catalytic VOCs degradation over the Ag3PO4/Ag/SrTiO3 catalyst. Reprinted with permission from Ref. [112]. Copyright (2019) American Chemical Society.
Fig. 13. Schematic of the photothermal synergistic catalytic degradation of VOCs over the Pt-rGO-TiO2 catalyst. Reprinted with permission from Ref. [114]. Copyright (2018) Elsevier.
Fig. 14. (a) UV-vis diffuse reflectance spectroscopy spectra of the prepared samples; (b) Toluene conversion over the ACo2O4 catalysts under simulated sunlight irradiation. Reprinted with permission from Ref. [117]. Copyright (2019) Elsevier.
Fig. 15. Schematic of photothermal synergistic catalysis for ethanol oxidation over the Au/TiO2 catalyst. Reprinted with permission from Ref. [119]. Copyright (2016) American Chemical Society.
Fig. 16. (a) Change in CO2 concentration during the photothermocatalytic degradation of formaldehyde over CoxMny catalysts at 40 °C; (b) Formaldehyde degradation rates under different reaction conditions over Co1Mn1 catalyst. Reprinted with permission from Ref. [122]. Copyright (2016) Elsevier.
Fig. 17. Schematic of photothermal synergistic catalysis for ethanol oxidation on the WO3-x catalyst. Reprinted with permission from Ref. [127]. Copyright (2017) Elsevier.
Fig. 18. Schematic of photothermal synergistic catalysis for VOCs oxidation on the PtCu/CeO2 catalyst. Reprinted with permission from Ref. [134]. Copyright (2019) Elsevier.
Fig. 19. Electron transfer and Fermi level of the Au/TiO2-C3N4 catalyst under visible light irradiation. Reprinted with permission from Ref. [140]. Copyright (2016) Royal Society of Chemistry.
Fig. 20. Schematic of photothermal synergistic catalysis for CO methanation on Ru/TiO2 catalyst under the UV light irradiation. Reprinted with permission from Ref. [142]. Copyright (2014) Elsevier.
Fig. 21. Schematic of photothermal synergistic catalytic FTS on the Ru/graphene catalyst. Reprinted with permission from Ref. [145]. Copyright (2015) American Chemical Society.
Fig. 22. Reaction route for photothermal synergistic catalytic CO oxidation over the Pd/CeO2 catalyst under visible light illumination. Reprinted with permission from Ref. [106]. Copyright (2016) American Chemical Society.
|
[1] | 赵彬彬, 钟威, 陈峰, 王苹, 别传彪, 余火根. 高晶化g-C3N4光催化剂: 合成、结构调控和光催化产氢[J]. 催化学报, 2023, 52(9): 127-143. |
[2] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 蔡铭洁, 刘艳萍, 董珂欣, 陈晓波, 李世杰. 漂浮型Bi2WO6/C3N4/碳布S型异质结光催化材料用于高效净化水体环境[J]. 催化学报, 2023, 52(9): 239-251. |
[5] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[6] | 王思恺, 闵祥婷, 乔波涛, 颜宁, 张涛. 单原子催化: 追寻催化领域的“圣杯”[J]. 催化学报, 2023, 52(9): 1-13. |
[7] | 张雯, 宋彩彩, 王嘉蔚, 蔡舒婷, 高梦语, 冯有祥, 鲁统部. 双向主客体作用促进水溶液中选择性光催化CO2还原与醇氧化[J]. 催化学报, 2023, 52(9): 176-186. |
[8] | 江梓聪, 程蓓, 张留洋, 张振翼, 别传彪. 氧化锌基梯型异质结光催化剂[J]. 催化学报, 2023, 52(9): 32-49. |
[9] | 赵磊, 张震, 朱昭昭, 李平波, 蒋金霞, 杨婷婷, 熊佩, 安旭光, 牛晓滨, 齐学强, 陈俊松, 吴睿. 缺陷氮掺杂碳耦合Co-N5单原子位点用于高效锌-空气电池[J]. 催化学报, 2023, 51(8): 216-224. |
[10] | 刘博文, 蔡家杰, 张建军, 谭海燕, 程蓓, 许景三. MOF/CdS梯型光催化剂同时进行苯甲醇氧化和析氢反应及其机理研究[J]. 催化学报, 2023, 51(8): 204-215. |
[11] | 宋明明, 宋相海, 刘鑫, 周伟强, 霍鹏伟. ZnIn2S4/MOF-808微球结构S型异质结光催化剂的制备及其光还原CO2性能研究[J]. 催化学报, 2023, 51(8): 180-192. |
[12] | 邵秀丽, 李可, 李静萍, 程强, 王国宏, 王楷. 揭示NiS@Ta2O5纳米纤维中梯型电荷转移路径及光催化CO2转化性能[J]. 催化学报, 2023, 51(8): 193-203. |
[13] | 殷楠, 陈伟斌, 杨勇, 唐钲, 李攀杰, 张潇月, 唐兰勤, 王天宇, 王阳, 周勇, 邹志刚. 具有高效激子解离和明确反应位点的Tröger碱基三维多孔芳基有机骨架及其光催化近单一选择性CO2转化[J]. 催化学报, 2023, 51(8): 168-179. |
[14] | 李嘉明, 李源, 王小田, 杨直雄, 张高科. TiO2上原子分散的Fe位点促进光催化CO2还原: 增强的催化活性、 DFT计算和机制洞察[J]. 催化学报, 2023, 51(8): 145-156. |
[15] | 阎菲, 张由子, 刘思碧, 邹睿卿, Jahan B Ghasemi, 李炫华. 供体-受体型卟啉基金属有机框架实现有效电荷分离高效光催化析氢[J]. 催化学报, 2023, 51(8): 124-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||