催化学报 ›› 2021, Vol. 42 ›› Issue (7): 1054-1077.DOI: 10.1016/S1872-2067(20)63722-6

• 综述 • 上一篇    下一篇

铱基催化剂在酸性析氧反应中的研究进展

刘一蒲a, 梁宵a, 陈辉a, 高瑞芹a,b, 石磊a, 杨岚a, 邹晓新a,*()   

  1. a吉林大学化学学院, 无机合成与制备化学国家重点实验室, 吉林长春130012
    b宁波理工学院, 生物与化学工程学院, 浙江宁波315100
  • 收稿日期:2020-08-27 接受日期:2020-10-13 出版日期:2021-07-18 发布日期:2020-12-10
  • 通讯作者: 邹晓新
  • 作者简介:* 电话/传真: (0431)85168221; 电子信箱: xxzou@jlu.edu.cn
  • 基金资助:
    国家自然科学基金(21922507);国家自然科学基金(21771079);国家自然科学基金(22005116);国家自然科学基金(21621001);霍英东青年教师奖励基金(161011);博士后国际交流计划派出项目(20190054);111引智计划(B17020)

Iridium-containing water-oxidation catalysts in acidic electrolyte

Yipu Liua, Xiao Lianga, Hui Chena, Ruiqin Gaoa,b, Lei Shia, Lan Yanga, Xiaoxin Zoua,*()   

  1. aState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, Jilin, China
    bSchool of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, Zhejiang, China
  • Received:2020-08-27 Accepted:2020-10-13 Online:2021-07-18 Published:2020-12-10
  • Contact: Xiaoxin Zou
  • Supported by:
    National Natural Science Foundation of China(21922507);National Natural Science Foundation of China(21771079);National Natural Science Foundation of China(22005116);National Natural Science Foundation of China(21621001);Fok Ying Tung Education Foundation(161011);International Postdoctoral Exchange Fellowship Program(20190054);111 Project(B17020)

摘要:

降低对化石能源依赖, 实现无碳能源需要构建以可再生能源(如太阳能、风能等)为主体的能源框架. 氢气是无碳能源框架下的一种较为理想的能源载体, 而电解水制氢技术能够有效制备环境友好的高纯氢气. 其中, 质子交换膜基(PEM)电解水技术相较碱性电解技术能够实现更高的质子导电性、电解效率、响应速度以及产物气体分离能力, 展现出较高的应用价值. 然而, 由于PEM电解技术工作环境为高腐蚀性的强酸条件, 极大限制了催化材料的选择范围. 同时, 由于PEM电解池的阳极端析氧反应效率远远低于阴极端析氢反应, 因此析氧反应作为瓶颈反应决定了PEM电解池的总体工作效率. 由于其催化条件同时具有强酸性和强氧化性, 目前只有铱基催化剂能够保持较长时间催化活性. 二氧化铱(IrO2)是PEM电解水技术商用析氧催化剂. 然而由于铱元素在地球上储量极低(0.001 ppm), 因此铱基催化剂的使用严重限制了PEM电解池的大规模应用. 为发展PEM电解技术, 亟需研制出高活性、高稳定性的新型低铱催化剂来替代IrO2.
本文首先总结了酸性析氧反应的催化机理, 并给出了衡量材料催化性能的普适方法. 其次, 总结了多个课题组利用原位表征技术获得的晶化IrO2以及无定形IrOx在不同催化条件下的结构变化, 以期了解材料的共性催化特征及影响结构变化的可能因素. 再次, 进一步重点描述了三类常见低铱催化剂, 包括异原子掺杂IrO2(IrOx)基催化剂、钙钛矿型铱基催化剂及烧绿石型铱基催化剂, 并尝试关联材料结构特征与催化本征性能. 最后, 介绍了该领域尚未解决的问题与挑战, 以期在酸性析氧反应条件下进一步平衡催化材料的催化活性和催化稳定性.

关键词: 电催化, 析氧反应, 水裂解, 铱, 质子交换膜电解池

Abstract:

With the goal of constructing a carbon-free energy cycle, proton-exchange membrane (PEM) water electrolysis is a promising technology that can be integrated effectively with renewable energy resources to produce high-purity hydrogen. IrO2, as a commercial electrocatalyst for the anode side of a PEM water electrolyzer, can both overcome the high corrosion conditions and exhibit efficient catalytic performance. However, the high consumption of Ir species cannot meet the sustainable development and economic requirements of this technology. Accordingly, it is necessary to understand the OER catalytic mechanisms for Ir species, further designing new types of low-iridium catalysts with high activity and stability to replace IrO2. In this review, we first summarize the related catalytic mechanisms of the acidic oxygen evolution reaction (OER), and then provide general methods for measuring the catalytic performance of materials. Second, we present the structural evolution results of crystalline IrO2 and amorphous IrOx using in situ characterization techniques under catalytic conditions to understand the common catalytic characteristics of the materials and the possible factors affecting the structural evolution characteristics. Furthermore, we focus on three types of common low-iridium catalysts, including heteroatom-doped IrO2 (IrOx)-based catalysts, perovskite-type iridium-based catalysts, and pyrochlore-type iridium-based catalysts, and try to correlate the structural features with the intrinsic catalytic performance of materials. Finally, at the end of the review, we present the unresolved problems and challenges in this field in an attempt to develop effective strategies to further balance the catalytic activity and stability of materials under acidic OER catalytic conditions.

Key words: Electrocatalysis, Oxygen evolution reaction, Water splitting, Iridium, Proton exchange membrane electrolyzer