催化学报 ›› 2021, Vol. 42 ›› Issue (7): 1054-1077.DOI: 10.1016/S1872-2067(20)63722-6
刘一蒲a, 梁宵a, 陈辉a, 高瑞芹a,b, 石磊a, 杨岚a, 邹晓新a,*()
收稿日期:
2020-08-27
接受日期:
2020-10-13
出版日期:
2021-07-18
发布日期:
2020-12-10
通讯作者:
邹晓新
作者简介:
* 电话/传真: (0431)85168221; 电子信箱: xxzou@jlu.edu.cn基金资助:
Yipu Liua, Xiao Lianga, Hui Chena, Ruiqin Gaoa,b, Lei Shia, Lan Yanga, Xiaoxin Zoua,*()
Received:
2020-08-27
Accepted:
2020-10-13
Online:
2021-07-18
Published:
2020-12-10
Contact:
Xiaoxin Zou
Supported by:
摘要:
降低对化石能源依赖, 实现无碳能源需要构建以可再生能源(如太阳能、风能等)为主体的能源框架. 氢气是无碳能源框架下的一种较为理想的能源载体, 而电解水制氢技术能够有效制备环境友好的高纯氢气. 其中, 质子交换膜基(PEM)电解水技术相较碱性电解技术能够实现更高的质子导电性、电解效率、响应速度以及产物气体分离能力, 展现出较高的应用价值. 然而, 由于PEM电解技术工作环境为高腐蚀性的强酸条件, 极大限制了催化材料的选择范围. 同时, 由于PEM电解池的阳极端析氧反应效率远远低于阴极端析氢反应, 因此析氧反应作为瓶颈反应决定了PEM电解池的总体工作效率. 由于其催化条件同时具有强酸性和强氧化性, 目前只有铱基催化剂能够保持较长时间催化活性. 二氧化铱(IrO2)是PEM电解水技术商用析氧催化剂. 然而由于铱元素在地球上储量极低(0.001 ppm), 因此铱基催化剂的使用严重限制了PEM电解池的大规模应用. 为发展PEM电解技术, 亟需研制出高活性、高稳定性的新型低铱催化剂来替代IrO2.
本文首先总结了酸性析氧反应的催化机理, 并给出了衡量材料催化性能的普适方法. 其次, 总结了多个课题组利用原位表征技术获得的晶化IrO2以及无定形IrOx在不同催化条件下的结构变化, 以期了解材料的共性催化特征及影响结构变化的可能因素. 再次, 进一步重点描述了三类常见低铱催化剂, 包括异原子掺杂IrO2(IrOx)基催化剂、钙钛矿型铱基催化剂及烧绿石型铱基催化剂, 并尝试关联材料结构特征与催化本征性能. 最后, 介绍了该领域尚未解决的问题与挑战, 以期在酸性析氧反应条件下进一步平衡催化材料的催化活性和催化稳定性.
刘一蒲, 梁宵, 陈辉, 高瑞芹, 石磊, 杨岚, 邹晓新. 铱基催化剂在酸性析氧反应中的研究进展[J]. 催化学报, 2021, 42(7): 1054-1077.
Yipu Liu, Xiao Liang, Hui Chen, Ruiqin Gao, Lei Shi, Lan Yang, Xiaoxin Zou. Iridium-containing water-oxidation catalysts in acidic electrolyte[J]. Chinese Journal of Catalysis, 2021, 42(7): 1054-1077.
Fig. 2. Schematic illustration of (a) typical AEM scheme, (b) scaling relationship among M-OH, M-O and M-OOH, (c) a volcano plot using descriptor to represent the catalytic activity trend. (d) The volcano plot between catalytic activities and ΔGO - ΔGOH. Reproduced with permission [36]. Copyright 2011, Wiley-VCH. (e) The volcano plot between catalytic activities and eg electron. Reproduced with permission [38]. Copyright 2011, American Association for the Advancement of Science. (f) The relationship between p-state center and oxygen adsorption energy for cubic ABO3 oxides. Reproduced with permission. Copyright 2018, Royal Society of Chemistry [39].
Fig. 3. (a) Schematic illustration of three possible LOM schemes. (b) APT data of the near-surface region of hydrous Ir16Ox. (c) Local mass spectrum of oxide cluster in (b). (b,c) Reproduced with permission [42]. Copyright 2019, Royal Society of Chemistry. (d) Colored HRTEM image of La2LiIrO6 after 50 CV measurements. (e) XAS spectra of pristine La2LiIrO6, La2LiIrO6 after oxidation and IrO2. (d,e) Reproduced with permission [43]. Copyright 2017, Nature Publishing Group.
Fig. 4. (a) A polarization curve for OER. η10 is the overpotential at 10 mA/cm2. (b) A Tafel plot converted from (a). The red dashed line depicts the least potential deviation for determining the linear region. (c) Schematic diagrams of Tafel plot analysis for two specific catalysts. (d) CV plots with different scan rates under the non-Faradic range. (e) A linear trend conducted from the difference of ?j against different scan rates. (f) CV plot of SrZrO3-SrIrO3 solid solution at a potential region of 0.4-1.4 V vs. RHE.
Fig. 5. (a) The inverse relationship between the stabilities of monometallic oxides and their reactivities for OER. Reproduced with permission [56]. Copyright 2014, American Chemical Society. (b) Stability number presented for iridium containing catalysts in thin film or powder form. (c) Stability number plotted versus mass specific current density for some iridium containing powder catalysts. (b,c) Reproduced with permission [60]. Copyright 2018, Nature Publishing Group. (d) The activity stability factor (ASF) for Ir-poly and dft-Ir25Os75. Reproduced under the terms of the Creative Commons Attribution License.
Fig. 6. Iridium dissolution profiles for (a) Ir black (red), electrochemically oxidized iridium (blue) and (b) thermally prepared IrO2 when cycling the catalysts from 0.05 to 1.2 V. (a,b) Reproduced with permission [62]. Copyright 2017, American Chemical Society. (c) CV curves (left axis) and Ir oxidation state value at applied potentials (right axis) of EIROF. Reproduced with permission [65]. Copyright 2014, Royal Society of Chemistry. Ir 4f (d) and O 1s (e) XPS spectrum under open circuit and oxygen evolution conditions. (d,e) Reproduced with permission [66]. Copyright 2014, Wiley-VCH.
Fig. 7. (a) O K-edge spectra of IrO2 and amorphous IrOx. Reproduced with permission [67]. Copyright 2016, Royal Society of Chemistry. (b) O K-edge spectra of Ir-coated PEM during and after OER. (c) O K-edge spectra of Ir-coated PEM at successively applied potentials. (b,c) Reproduced with permission [69]. Copyright 2017, Royal Society of Chemistry.
Fig. 8. Dissolved Ru and Ir for (a) Ru@IrOx and (b) RuIrOx at different times. Reproduced with permission [71]. Copyright 2019, Elsevier. (c) Mass activity comparison between Ir0.7Ru0.3Ox (EC) and Ir0.7Ru0.3O2 (TT). Reproduced with permission [74]. Copyright 2017, Elsevier. (d) Schematic illustration of the Ni leaching from the surface of Ir-Ni mixed oxides. Reproduced with permission [75]. Copyright 2015, American Chemical Society. (e) Schematic illustration of catalytic sites in IrNiOx nanoparticles. Reproduced with permission [76]. Copyright 2018, Nature Publishing Group.
Fig. 9. (a) Crystal structure of 6H-SrIrO3. Reproduced with permission [87]. Copyright 2018, Nature Publishing Group. (b) Crystal structure of Ba3M’M’’2O9 triple perovskites. (c) XRD patterns of Ba3M’Ir2O9. (b,c) Reproduced with permission [91]. Copyright 2020, American Chemical Society. (d) The crystal structure and (e) electron location function (ELF) of 12L-perovskites (Ba4MIr3O12). (d,e) Reproduced with permission [90]. Copyright 2020, Elsevier. (f) The structure of Ruddlesden-Popper (RP) phases with (ABO3)n=1/(AO) formula. Reproduced with permission [93]. Copyright 2014, American Chemical Society. (g) Specific OER activity of Sr iridates in 0.1 M HClO4. Reproduced with permission [94]. Copyright 2017, American Chemical Society.
Catalyst | Structural information | Electrolyte solution | Mass loading (mg/cm2) | η at jgeo=10 mA/cmgeo2 (mV) | Specific activity | Mass fraction of dissolved ions | Ref. |
---|---|---|---|---|---|---|---|
IrOx/SrIrO3 | Orthorhombic perovskite | 0.5 M H2SO4 | — | 270-290 (AFM normalized) | 1.53 V ~12 mA/cmAFM2 | CV @30 min (ICP) Sr-30%-50% | [ |
Ba2PrIrO6 | Cubic perovskite | 0.1 M HClO4 | 0.95 | ~400 (~425 @1 h) | 1.53 V ~1 mA/cmECSA2 | 1.55 V @1 h (ICP) Ba-14.2% Ir-0.8% Pr-11.3% | [ |
Pr3IrO7 | Fluorite | 0.1 M HClO4 | 0.95 | — | 1.53 V ~0.1 mA/cmECSA2 | — | [ |
SrCo0.9Ir0.1O3-δ | Orthorhombic perovskite | 0.1 M HClO4 | 0.255 | ~330 | 1.53 V ~10 mA/cmBET2 | 10k cycles CV (ICP) Sr-64.11% Co-67.08% Ir-35.5% | [ |
Ir doped SrTiO3 | Cubic perovskite | 0.1 M HClO4 | 0.21 | 247 | 1.525 V 820 A/gIr 0.125 mA/cmECSA2 0.455 mA/cmBET2 | — | [ |
SrZrO3-SrIrO3 solid solution | Orthorhombic perovskite | 0.1 M HClO4 | 0.13 | 240 | 1.53 V 1540 A/gIr 0.22 mA/cmECSA2 1.2 mA/cmBET2 1.35 A/C | 10 mA/cmgeo2 @10h (ICP) Sr-12% Ir-1% | [ |
3C-SrIrO3 | Orthorhombic perovskite-3C | 0.5 M H2SO4 | 0.9 | 270 | 1.525 V 38 A/gIr | 10 mA/cmgeo2 @30h (ICP) Sr-24% | [ |
6H-SrIrO3 | Monoclinic perovskite-6H | 0.5 M H2SO4 | 0.9 | 248 | 1.525 V 76 A/gIr | 10 mA/cmgeo2 @30h (ICP) Sr-1% | [ |
Co-doped SrIrO3 (6H) | Monoclinic perovskite-6H | 0.1 M HClO4 | 0.45 | 235 | 1.525 V 286.7 A/gIr | 10 mA/cmgeo2 @1h (ICP) Sr-12% Co-0.5% Ir-0.1% | [ |
BaIrO3 polycrystalline particles | Monoclinic perovskite | 0.5 M H2SO4 | 0.5 | — | 1.58 V 90 A/goxide ~4 A/FECSA | 100-cycle CV (EDS) Ba-100% | [ |
La2LiIrO6 | Monoclinic perovskite | 0.1 M H2SO4 | 0.25 | ~300 | 1.53V ~40 A/goxide ~2.5 mA/cmBET2 | 1.65 V @10 min (XPS) Ir-26.7% La-94.5% Li-100% | [ |
Ba4PrIr3O12 | Monoclinic perovskite-12L | 0.1 M HClO4 | 0.562 | 278 | 1.55 V 145 A/gIr 2.63 mA/cmECSA2 | 10 mA/cmgeo2 @10 h (ICP) Ba-32% Pr-32% Ir-1.18% | [ |
Ba3TiIr2O9 | Hexagonal perovskite | 0.1 M HClO4 | 0.281 | 275 | 1.53 V 0.89 mA/cmECSA2 250 A/gIr | 10 mA/cmgeo2 @10 h (ICP) Ba-2.1% Ti-1.6% | [ |
Sr2IrO4 | Tetragonal perovskite | 0.1 M HClO4 | 0.08 mgIr/cm2 | 286 | 1.55 V 394 A/gIr 6.1 mA/cmBET2 | 10 mA/cmgeo2 @6h (ICP) Sr-74% Ir-4% | [ |
Sr4IrO6 | Hexagonal perovskite | 0.1 M HClO4 | 0.08 mgIr/cm2 | 287 | 1.55 V 274 A/gIr 0.7 mA/cmBET2 | 10 mA/cmgeo2 @6h (ICP) Sr-90% Ir-30% | [ |
Ca2IrO4 | Hexagonal perovskite | 0.1 M HClO4 | 0.20 | 370 | — | — | [ |
H3.6IrO4·3.7H2O | Tetragonal perovskite | 0.1 M HClO4 | 0.255 | — | 1.53 V ~3.5 mA/cmBET2 | 1 mA/cmgeo2 @1 h (ICP) Ir-0.08% | [ |
Sr2CoIrO6 | Orthorhombic perovskite | 0.1 M HClO4 | 0.255 | 330 (BET normalized) | 1.55 V 3.5 mA/cmBET2 | 1 mA/cmBET2 @24 h (ICP) Sr-5% Co-4% Ir-2.8% | [ |
Sr2FeIrO6 | Triclinic perovskite | 0.1 M HClO4 | 0.255 | 420 (BET normalized) | 1.55 V 1.8 mA/cmBET2 | 1 mA/cmoxide2 @24 h (ICP) Sr-7% Fe-6% Ir-3% | [ |
Sr2Fe0.5Ir0.5O4 | Tetragonal perovskite | 0.1 M HClO4 | 0.255 | 410 (BET normalized) | 1.55 V 2.5 mA/cmBET2 | 1 mA/cmoxide2 @24 h (ICP) Sr-4% Fe-6% Ir-8% | [ |
Pb2Ir2O6.5 | Cubic pyrochlore | 0.1 M HClO4 | 0.2 | ~470 | 1.55 V ~150 A/gIr cm-2 | — | [ |
Bi2Ir2O7 | Cubic pyrochlore | 0.1 M HClO4 | 0.2 | 1.6 V ~30 A/gIr cm-2 | — | [ | |
Pr2Ir2O7 | Cubic pyrochlore | 0.1 M HClO4 | 0.285 | ~290 | 1.53 V 424.5 A/gIr | — | [ |
Kx≈0.25IrO2 | Monoclinic hollandite | 0.1 M HClO4 | 0.2 | 350 | 1.53 V 12.2 A/gIr | — | [ |
CaIrO3 | Cubic perovskite | 0.1 M HClO4 | 0.2 | — | 1.55 V 30 A/gIr | — | [ |
β-H2IrO3 | Orthorhombic | 0.1 M H2SO4 | 0.5 | 345 | 1.53 V 1.0 mA/cmBET2 | 50 h@1.55 V Ir-0.2 % | [ |
Table 1 List of structure information, measurement parameters and catalytic performances of complex iridium-based oxides.
Catalyst | Structural information | Electrolyte solution | Mass loading (mg/cm2) | η at jgeo=10 mA/cmgeo2 (mV) | Specific activity | Mass fraction of dissolved ions | Ref. |
---|---|---|---|---|---|---|---|
IrOx/SrIrO3 | Orthorhombic perovskite | 0.5 M H2SO4 | — | 270-290 (AFM normalized) | 1.53 V ~12 mA/cmAFM2 | CV @30 min (ICP) Sr-30%-50% | [ |
Ba2PrIrO6 | Cubic perovskite | 0.1 M HClO4 | 0.95 | ~400 (~425 @1 h) | 1.53 V ~1 mA/cmECSA2 | 1.55 V @1 h (ICP) Ba-14.2% Ir-0.8% Pr-11.3% | [ |
Pr3IrO7 | Fluorite | 0.1 M HClO4 | 0.95 | — | 1.53 V ~0.1 mA/cmECSA2 | — | [ |
SrCo0.9Ir0.1O3-δ | Orthorhombic perovskite | 0.1 M HClO4 | 0.255 | ~330 | 1.53 V ~10 mA/cmBET2 | 10k cycles CV (ICP) Sr-64.11% Co-67.08% Ir-35.5% | [ |
Ir doped SrTiO3 | Cubic perovskite | 0.1 M HClO4 | 0.21 | 247 | 1.525 V 820 A/gIr 0.125 mA/cmECSA2 0.455 mA/cmBET2 | — | [ |
SrZrO3-SrIrO3 solid solution | Orthorhombic perovskite | 0.1 M HClO4 | 0.13 | 240 | 1.53 V 1540 A/gIr 0.22 mA/cmECSA2 1.2 mA/cmBET2 1.35 A/C | 10 mA/cmgeo2 @10h (ICP) Sr-12% Ir-1% | [ |
3C-SrIrO3 | Orthorhombic perovskite-3C | 0.5 M H2SO4 | 0.9 | 270 | 1.525 V 38 A/gIr | 10 mA/cmgeo2 @30h (ICP) Sr-24% | [ |
6H-SrIrO3 | Monoclinic perovskite-6H | 0.5 M H2SO4 | 0.9 | 248 | 1.525 V 76 A/gIr | 10 mA/cmgeo2 @30h (ICP) Sr-1% | [ |
Co-doped SrIrO3 (6H) | Monoclinic perovskite-6H | 0.1 M HClO4 | 0.45 | 235 | 1.525 V 286.7 A/gIr | 10 mA/cmgeo2 @1h (ICP) Sr-12% Co-0.5% Ir-0.1% | [ |
BaIrO3 polycrystalline particles | Monoclinic perovskite | 0.5 M H2SO4 | 0.5 | — | 1.58 V 90 A/goxide ~4 A/FECSA | 100-cycle CV (EDS) Ba-100% | [ |
La2LiIrO6 | Monoclinic perovskite | 0.1 M H2SO4 | 0.25 | ~300 | 1.53V ~40 A/goxide ~2.5 mA/cmBET2 | 1.65 V @10 min (XPS) Ir-26.7% La-94.5% Li-100% | [ |
Ba4PrIr3O12 | Monoclinic perovskite-12L | 0.1 M HClO4 | 0.562 | 278 | 1.55 V 145 A/gIr 2.63 mA/cmECSA2 | 10 mA/cmgeo2 @10 h (ICP) Ba-32% Pr-32% Ir-1.18% | [ |
Ba3TiIr2O9 | Hexagonal perovskite | 0.1 M HClO4 | 0.281 | 275 | 1.53 V 0.89 mA/cmECSA2 250 A/gIr | 10 mA/cmgeo2 @10 h (ICP) Ba-2.1% Ti-1.6% | [ |
Sr2IrO4 | Tetragonal perovskite | 0.1 M HClO4 | 0.08 mgIr/cm2 | 286 | 1.55 V 394 A/gIr 6.1 mA/cmBET2 | 10 mA/cmgeo2 @6h (ICP) Sr-74% Ir-4% | [ |
Sr4IrO6 | Hexagonal perovskite | 0.1 M HClO4 | 0.08 mgIr/cm2 | 287 | 1.55 V 274 A/gIr 0.7 mA/cmBET2 | 10 mA/cmgeo2 @6h (ICP) Sr-90% Ir-30% | [ |
Ca2IrO4 | Hexagonal perovskite | 0.1 M HClO4 | 0.20 | 370 | — | — | [ |
H3.6IrO4·3.7H2O | Tetragonal perovskite | 0.1 M HClO4 | 0.255 | — | 1.53 V ~3.5 mA/cmBET2 | 1 mA/cmgeo2 @1 h (ICP) Ir-0.08% | [ |
Sr2CoIrO6 | Orthorhombic perovskite | 0.1 M HClO4 | 0.255 | 330 (BET normalized) | 1.55 V 3.5 mA/cmBET2 | 1 mA/cmBET2 @24 h (ICP) Sr-5% Co-4% Ir-2.8% | [ |
Sr2FeIrO6 | Triclinic perovskite | 0.1 M HClO4 | 0.255 | 420 (BET normalized) | 1.55 V 1.8 mA/cmBET2 | 1 mA/cmoxide2 @24 h (ICP) Sr-7% Fe-6% Ir-3% | [ |
Sr2Fe0.5Ir0.5O4 | Tetragonal perovskite | 0.1 M HClO4 | 0.255 | 410 (BET normalized) | 1.55 V 2.5 mA/cmBET2 | 1 mA/cmoxide2 @24 h (ICP) Sr-4% Fe-6% Ir-8% | [ |
Pb2Ir2O6.5 | Cubic pyrochlore | 0.1 M HClO4 | 0.2 | ~470 | 1.55 V ~150 A/gIr cm-2 | — | [ |
Bi2Ir2O7 | Cubic pyrochlore | 0.1 M HClO4 | 0.2 | 1.6 V ~30 A/gIr cm-2 | — | [ | |
Pr2Ir2O7 | Cubic pyrochlore | 0.1 M HClO4 | 0.285 | ~290 | 1.53 V 424.5 A/gIr | — | [ |
Kx≈0.25IrO2 | Monoclinic hollandite | 0.1 M HClO4 | 0.2 | 350 | 1.53 V 12.2 A/gIr | — | [ |
CaIrO3 | Cubic perovskite | 0.1 M HClO4 | 0.2 | — | 1.55 V 30 A/gIr | — | [ |
β-H2IrO3 | Orthorhombic | 0.1 M H2SO4 | 0.5 | 345 | 1.53 V 1.0 mA/cmBET2 | 50 h@1.55 V Ir-0.2 % | [ |
Fig. 10. (a) The crystal structure of pyrochlore. Reproduced with permission [97]. Copyright 2017, American Chemical Society. (b) Valence band spectra of Pb-Ir, Bi-Ir pyrochlores and IrO2. (c) Schematic illustration of the broadening Ir-5d band induced by the distortion of octahedra. (b,c) Reproduced with permission [98]. Copyright 2016, Nature Publishing Group. (d) Electronic phase diagram and corresponding band structure of Ir 5d orbitals. (e) O K-edge XAS of different pyrochlores. (d,e) Reproduced with permission [99]. Copyright 2018, Wiley-VCH. (f) Geometric current density and iridium mass activity of the different pyrochlores. Reproduced with permission [100]. Copyright 2019, American Chemical Society.
|
[1] | 唐小龙, 李锋, 李方, 江燕斌, 余长林. 单原子催化剂在光催化和电催化合成过氧化氢中的研究进展[J]. 催化学报, 2023, 52(9): 79-98. |
[2] | 张季, 俞爱民, 孙成华. 非金属掺杂石墨烯异核双原子催化剂氮还原特性研究[J]. 催化学报, 2023, 52(9): 263-270. |
[3] | 胡金念, 田玲婵, 王海燕, 孟洋, 梁锦霞, 朱纯, 李隽. MXene负载3d金属单原子高效氮还原电催化剂的理论筛选[J]. 催化学报, 2023, 52(9): 252-262. |
[4] | 洪岩, 王琦, 阚子旺, 张禹烁, 郭晶, 李思琦, 刘松, 李斌. 电化学氮还原氨反应催化剂的最新研究进展[J]. 催化学报, 2023, 52(9): 50-78. |
[5] | 刘勇, 赵晓丽, 隆昶, 王晓艳, 邓邦为, 李康璐, 孙艳娟, 董帆. 原位构筑动态Cu/Ce(OH)x界面用于高活性、高选择性和高稳定性硝酸盐还原合成氨[J]. 催化学报, 2023, 52(9): 196-206. |
[6] | 高晖, 张恭, 程东方, 王永涛, 赵静, 李晓芝, 杜晓伟, 赵志坚, 王拓, 张鹏, 巩金龙. 构建Cu台阶位促进电催化CO2还原制醇类化学品的研究[J]. 催化学报, 2023, 52(9): 187-195. |
[7] | 邹心仪, 顾均. 酸性条件下二氧化碳高效电还原策略[J]. 催化学报, 2023, 52(9): 14-31. |
[8] | 王潇涵, 田汉, 余旭, 陈立松, 崔香枝, 施剑林. 非晶相电催化剂在电解水领域的研究进展[J]. 催化学报, 2023, 51(8): 5-48. |
[9] | 韩璟怡, 管景奇. 通过表面镧改性和体相锰掺杂协助钴尖晶石酸性下析氧[J]. 催化学报, 2023, 51(8): 1-4. |
[10] | 周波, 石建巧, 姜一民, 肖磊, 逯宇轩, 董帆, 陈晨, 王特华, 王双印, 邹雨芹. 强化脱氢动力学实现超低电池电压和大电流密度下抗坏血酸电氧化[J]. 催化学报, 2023, 50(7): 372-380. |
[11] | 耿仕鹏, 陈利明, 陈海鑫, 王毅, 丁朝斌, 蔡丹丹, 宋树芹. 揭示层状晶态CoMoO4的水裂解电催化机制: 从晶面选择到活性位点设计的理论研究[J]. 催化学报, 2023, 50(7): 334-342. |
[12] | 王元男, 王立娜, 张可新, 徐靖尧, 武倩楠, 谢周兵, 安伟, 梁宵, 邹晓新. 钙钛矿氧化物在水裂解反应中的电催化研究[J]. 催化学报, 2023, 50(7): 109-125. |
[13] | 周纳, 王家志, 张宁, 王志, 王恒国, 黄岗, 鲍迪, 钟海霞, 张新波. 富含缺陷的Cu@CuTCNQ复合材料增强电催化硝酸盐还原成氨[J]. 催化学报, 2023, 50(7): 324-333. |
[14] | 李轩, 蒋兴星, 孔艳, 孙建桔, 胡琪, 柴晓燕, 杨恒攀, 何传新. GaN/In2O3的界面工程用于高效电催化CO2还原制备甲酸[J]. 催化学报, 2023, 50(7): 314-323. |
[15] | Sang Eon Jun, Sungkyun Choi, Jaehyun Kim, Ki Chang Kwon, Sun Hwa Park, Ho Won Jang. 用于电化学能量转换反应的非贵金属单原子催化剂[J]. 催化学报, 2023, 50(7): 195-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||