催化学报 ›› 2024, Vol. 59: 324-333.DOI: 10.1016/S1872-2067(23)64632-7

• 论文 • 上一篇    下一篇

单原子修饰原子簇的多配位Cu基催化剂上CO2高选择性电还原CO的研究

王超琛a,b, 葛旺鑫a, 唐雷b, 齐宴宾a, 董磊b, 江宏亮b, 沈建华a,*(), 朱以华a,*(), 李春忠a,b,*()   

  1. a华东理工大学材料科学与工程学院, 上海多级结构纳米材料工程技术研究中心, 超细材料制备与应用教育部重点实验室, 上海 200237
    b华东理工大学化工学院, 上海 200237
  • 收稿日期:2024-01-19 接受日期:2024-02-18 出版日期:2024-04-18 发布日期:2024-04-15
  • 通讯作者: *电子信箱: jianhuashen@ecust.edu.cn (沈建华), yhzhu@ecust.edu.cn (朱以华), czli@ecust.edu.cn (李春忠).
  • 基金资助:
    国家自然科学基金(U22B20143);国家自然科学基金(22178106);国家自然科学基金(22278136);上海市科学技术委员会(23ZR1416400);上海市科学技术委员会(22dz1205900);上海市高等学校特聘教授(东方学者)项目和中央高校基础研究基金(222201718002)

Highly selective CO2-to-CO electroreduction on multisite coordinated single-atom-modified atomic cluster Cu-based catalyst

Chaochen Wanga,b, Wangxin Gea, Lei Tangb, Yanbin Qia, Lei Dongb, Hongliang Jiangb, Jianhua Shena,*(), Yihua Zhua,*(), Chunzhong Lia,b,*()   

  1. aShanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
    bSchool of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2024-01-19 Accepted:2024-02-18 Online:2024-04-18 Published:2024-04-15
  • Contact: *E-mail: jianhuashen@ecust.edu.cn (J. Shen), yhzhu@ecust.edu.cn (Y. Zhu), czli@ecust.edu.cn (C. Li).
  • Supported by:
    The National Natural Science Foundation of China(U22B20143);The National Natural Science Foundation of China(22178106);The National Natural Science Foundation of China(22278136);The Science and Technology Commission of Shanghai Municipality(23ZR1416400);The Science and Technology Commission of Shanghai Municipality(22dz1205900);The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutes of High Learning, and the Fundamental Research Funds for the Central Universities(222201718002)

摘要:

随着可再生能源发电成本的持续下降和电催化技术的迅猛发展, 人们开始重新审视能源燃料和化学品的生产方式. 近年来, H2O和CO2等小分子的电催化转化反应已成为研究热点. 特别是, CO2还原反应(CO2RR)作为将CO2电化学还原为高附加值产品的一项变革性的技术, 备受关注. 在CO2RR的众多产物中, CO具有重要的地位, 它可以通过费托合成工艺直接用于合成醇、醛、酮、酸及烃等化工产品. 然而, 将CO2电催化转化为CO在整体效率方面仍面临诸多挑战. 因此, 设计并制备高效、经济且耐用的电催化剂已成为CO2RR领域发展的研究重点.

本文采用简单的配体辅助负载策略制备了铜单原子修饰的铜原子簇催化剂(Cu SA/ACs). 球差校正的高角度环形暗场扫描透射电子显微镜结果表明, 铜以单原子和原子簇的形式存在. 采用X射线吸收精细结构谱和X射线光电子能谱(XPS)分析了铜原子的电子和配位结构, 证明了Cu-N键和Cu-Cu键的存在. 电化学性能测试表明, 与铜单原子催化剂(Cu SACs)相比, Cu SA/ACs催化剂展现了较好的CO2RR性能, 其CO的转化法拉第效率从27.15%提高到98.94%, 电流密度是Cu SACs的3.6倍. 此外, 将该催化剂组装成流动电解池, 在600 mA cm-2的高电流密度下, CO选择性达到93.06%, 阴极的最高能量效率达61.9%, 优于大多数CO2还原制备CO的催化剂. 为了明确铜单原子组分引入对铜原子簇性能提升的原因, 通过电化学原位红外光谱研究催化剂在服役条件下的表面物种吸附. 结果表明, Cu SACs催化剂的单原子活性中心在CO2RR过程中受到H2析出反应的困扰, 活性中心表面的吸附物种主要为H2O而不是CO2, 从而导致CO2还原性能较差; 在Cu SA/ACs催化剂表面, 其活性中心由单原子和原子簇协同组成, CO2主要吸附在原子簇上, 单原子和原子簇协同作用促进了H2O的解离过程, 为CO2质子化提供丰富的活性氢, 进一步加快CO2RR的反应动力学. 密度泛函计算和差分电荷密度分析结果表明, 单原子的引入优化了原子簇的局域电子结构, 诱导d带中心靠近费米能级, 从而优化了*COOH中间体的形成能和CO的脱附过程.

综上, 本文通过合理的活性位点设计实现了多位点的耦合协同, 提升了铜基催化剂对于CO2RR的催化活性, 优化了铜基催化剂上CO2到CO的选择性, 通过机理研究加深了对铜基催化剂上CO2转化模式的认识, 为设计高效催化剂提供新思路.

关键词: 二氧化碳还原, 活性位点协同作用, 单原子, 原子簇, 电催化

Abstract:

Metal single-atom/atomic cluster catalysts (SA/AC) have emerged as effective electrocatalysts for the CO2 reduction reaction (CO2RR) due to their high metal atom utilization and controllable metal coordination environments. However, the designing and tuning of the local electronic environments of SA/AC ensembles remain a significant challenge. In this work, we develop a single-atom-modified atomic cluster copper catalyst (Cu SA/ACs) for CO2RR. The SA/AC-induced modulation of the local electronic structure enhances CO2 adsorption on the atomic cluster; additionally, the atomic cluster provides abundant active hydrogen for CO2 protonation by mediating hydrolysis dissociation on the SAs. Consequently, compared to copper single-atom catalysts (Cu SACs), the Cu SA/ACs exhibit significantly improved activity, the current is 3.6 times that of Cu SACs, and the Faradaic efficiency of CO rose from 27.15% to 98.94%. The Cu SA/ACs catalyst can efficiently reduce CO2 to CO in flow-cell configuration, and the CO selectivity is 93.06% at a current density of 600 mA cm-2. The maximum energy efficiency of the cathode is 61.9%, which is superior to that of most CO2-to-CO catalysts. This work provides a new perspective for developing efficient SA/AC catalysts.

Key words: CO2 reduction reaction, Active site synergism, Single atom, Atomic cluster, Electrocatalysis