催化学报 ›› 2022, Vol. 43 ›› Issue (4): 1165-1175.DOI: 10.1016/S1872-2067(21)63997-9

• 论文 • 上一篇    下一篇

无贵金属光催化剂VC/CdS纳米线将苯甲醇选择性氧化为苯甲醛并产氢

Muhammad Tayyaba, 刘玉洁a, 敏世雄d, Rana Muhammad Irfane, 朱乔虹a, 周亮b,c,*(), 雷菊英b,c, 张金龙a,#()   

  1. a华东理工大学化学与分子工程学院, 费林加诺贝尔奖科学家联合研究中心, 精密化学与分子工程国际联合研究实验室, 上海多介质环境催化与资源利用工程研究中心, 先进材料重点实验室, 上海200237
    b华东理工大学工业废水处理国家工程实验室, 上海200237
    c华东理工大学化工过程环境风险评估与控制国家环境保护重点实验室, 上海200237
    d北方民族大学化学化工学院, 宁夏银川750021
    e苏州大学苏州能源与材料创新研究院(SIEMIS)能源学院, 江苏苏州215006
  • 收稿日期:2021-10-08 接受日期:2021-10-08 出版日期:2022-03-05 发布日期:2021-12-31
  • 通讯作者: 周亮,张金龙
  • 基金资助:
    国家自然科学基金(22006038);国家自然科学基金(21972040);高校引进学科人才计划(B20031);上海市教委创新计划(2021-01-07-00-02-E00106);上海市科委(20DZ2250400);中国博士后科学基金(2020M681209);中央高校基本科研业务费专项资金

Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires

Muhammad Tayyaba, Yujie Liua, Shixiong Mind, Rana Muhammad Irfane, Qiaohong Zhua, Liang Zhoub,c,*(), Juying Leib,c, Jinlong Zhanga,#()   

  1. aKey Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
    bNational Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China
    cState Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
    dSchool of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, Ningxia, China
    eCollege of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou 215006, Jiangsu, China
  • Received:2021-10-08 Accepted:2021-10-08 Online:2022-03-05 Published:2021-12-31
  • Contact: Liang Zhou, Jinlong Zhang
  • Supported by:
    National Natural Science Foundation of China(22006038);National Natural Science Foundation of China(21972040);Program of Introducing Talents of Discipline to Universities(B20031);Innovation Program of Shanghai Municipal Education Commission(2021-01-07-00-02-E00106);Science and Technology Commission of Shanghai Municipality(20DZ2250400);China Postdoctoral Science Foundation(2020M681209);Fundamental Research Funds for the Central Universities

摘要:

太阳能制氢作为一种绿色、实用、可再生的能源生产技术越来越受到人们的关注. 传统的光解水产氢通常用三乙醇胺、硫化钠/亚硫酸钠、乳酸、甲醇、抗坏血酸和甲醇等做牺牲剂, 这些试剂的加入不仅会污染环境, 还会增加制氢成本. 而目前完全无牺牲剂体系的产氢效率普遍较低, 使得发展经济绿色的牺牲剂体系尤为迫切. 通过光催化在单一水性体系中同时生产可储存和可再生的氢气与高附加值的有机化学品是一种新兴环保的策略.
本文采用简单的静电自组装和煅烧方法将碳化钒(VC)和CdS纳米线(NW)复合形成VC/CS. 结果表明, 与原始的CdS NWs相比, 负载适量VC的CdS NWs的光催化活性显著提高. 然而, 同时促进光解水产氢和苯甲醇选择性氧化的机理仍需要进一步探究. X射线衍射谱、高倍透射电子显微镜、扫描透射电子显微镜以及光电子能谱结果表明, VC和CdS NW是紧密结合的, 且Cd, S, C和V元素均匀分布, 由于两者之间的紧密结合引起了催化剂颜色变化. 紫外可见光谱(UV-Vis)结果表明, 样品的光吸收范围增大, 但吸收带边没有发生明显改变.
当采用Na2S·9H2O和Na2SO3做牺牲剂时, VC/CS的产氢活性明显高于Pt负载的CdS, 说明VC是一种非常有利于产氢的非贵金属助催化剂. 当改用苯甲醇(BO)做牺牲剂时, 产氢速率明显增加, 同时苯甲醇选择性氧化成苯甲醛(BD). 进一步增加VC的负载量, 样品产氢活性先增加后减小; 当VC的负载量达到15%(VC/CS-15)时, 在可见光(λ > 420 nm)照射2 h后产氢效率达到20.5 mmol g-1h-1, BO转化率为41%, BD选择性超过99%, 约为CdS NW的661倍. 将光活性测试时间由2 h延长至4 h, BO转化率由41%提高到58%, 但BD选择性降至88%. 样品VC/CS-15上BD和H2生成趋势与UV-Vis漫反射光谱结果一致, 表明反应是通过光催化过程进行的. 此外, VC/CS-15在单色420 nm处产生BD和H2的表观量子效率约为7.5%. 光催化活性的增强是由于VC的加入降低了样品的Zeta电位, 使其对BO具有更强的吸附作用, 同时VC在CdS NWs上的牢固附着为质子还原提供了更多的活性位点, 通过减少电荷传输距离和提供更宽的电子传输通道来增强光生电子的传输. 综上, 本文设计的同时产氢和生成高附加值有机化学品的方法光解水产氢提供了新思路.

关键词: 产氢, 选择性氧化, 苯甲醛, 无贵金属, 可见光

Abstract:

In this work we used CdS NWs (nanowires) with vanadium carbide (VC) attached via facile electrostatic self-assembly and calcination method. The results showed that compared to pristine CdS NWs, the photocatalytic activity of CdS NWs loaded with the particular amount of VC was dramatically enhanced. Among them, the VC/CS-15 indicated the highest enhancement for simultaneous production of H2 with selective oxidation of benzyl alcohol (BO) into benzaldehyde (BD). The highest hydrogen evolution rate of 20.5 mmol g-1h-1was obtained with more than 99% selectivity for BD production under visible light (λ ˃ 420 nm) irradiation for 2 h, which was almost 661 times higher than the pristine CdS NWs. This enhancement of photocatalytic activity is due to the VC, which provides a favorable attraction for BO by lowering the zeta potential, along with the active site for hydrogen production, and retard the recombination of electron-hole pairs by increasing the conductivity of the photocatalyst. Moreover, the apparent quantum efficiency (AQE) of VC/CS-15 for BD and H2 production at monochromatic 420 nm is about 7.5%. At the end of the hydrogen evolution test, the selective oxidation with more than 99% selectivity was obtained. It hopes this work will prove its future significance and move scientific community toward a more economical way for achieving the commercialization of H2 by photocatalysis.

Key words: Hydrogen production, Selective oxidation, Benzaldehyde, Noble-metal-free, Visible light