催化学报 ›› 2023, Vol. 51: 66-79.DOI: 10.1016/S1872-2067(23)64488-2

• 论文 • 上一篇    下一篇

TiO2-x@C/MoO2肖特基结: 合理设计及高效电荷分离提升光催化性能

乔秀清a,b,*(), 李晨a, 王紫昭a, 侯东芳a,b, 李东升a,b,*()   

  1. a三峡大学材料与化学工程学院, 无机非金属结晶与能量转换材料重点实验室, 湖北宜昌443002
    b湖北三峡实验室, 湖北宜昌443007
  • 收稿日期:2023-04-28 接受日期:2023-06-15 出版日期:2023-08-18 发布日期:2023-09-11
  • 通讯作者: *电子信箱: qiaoxiuqing@126.com (乔秀清), lidongsheng1@126.com (李东升).
  • 基金资助:
    国家自然科学基金(21971143);国家自然科学基金(21805165);111工程(D20015)

TiO2-x@C/MoO2 Schottky junction: Rational design and efficient charge separation for promoted photocatalytic performance

Xiu-Qing Qiaoa,b,*(), Chen Lia, Zizhao Wanga, Dongfang Houa,b, Dong-Sheng Lia,b,*()   

  1. aCollege of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang443002, Hubei, China
    bHubei Three Gorges Laboratory, Yichang443007, Hubei, China
  • Received:2023-04-28 Accepted:2023-06-15 Online:2023-08-18 Published:2023-09-11
  • Contact: *E-mail: qiaoxiuqing@126.com (X.-Q. Qiao), lidongsheng1@126.com (D.-S. Li).
  • Supported by:
    National Natural Science Foundation of China(21971143);National Natural Science Foundation of China(21805165);111 Project(D20015)

摘要:

氢能具有143MJ/kg的高能量密度,光催化技术可以利用太阳能实现水分解制氢,被认为是缓解能源危机和环境污染的理想途径之一.自1972年TiO2被发现具有光电催化性能以来,研究者致力于通过多种策略提升TiO2的光催化活性.然而,其进一步应用仍然受到光响应差和光生载流子重组等问题的制约.负载助催化剂可以促进电子空穴的分离,降低产氢的过电位,是构建高效光催化体系的有效策略.电子从助催化剂向TiO2半导体的反向流动可降低电荷分离效率;此外,在多组分体系中,不同组分之间的界面电荷转移阻力制约光催化性能的进一步提升.因此,同时实现可见光吸收、组分间强界面耦合和抑制电子回流是构筑高效TiO2光催化剂的关键.
本文开发了一种简单的一步原位相变调节策略,构筑了一种新颖的TiO2-x@C/MoO2肖特基结用于光催化水分解制氢,并采用X射线衍射、扫描/透射电镜、拉曼光谱、电子顺磁共振、X射线光电子能谱和时间分辨光致发光曲线对催化剂进行了表征.结果表明,该肖特基结具有以下优点: (1) 丰富的氧空位.还原性气氛使得TiO2‒x中产生丰富的氧空位,氧空位的存在明显的降低了TiO2‒x的带隙并引入缺陷能级,从而提高了可见光吸收能力.(2) 强键合碳层.柠檬酸原位相变产生的碳包覆在TiO2‒x表面,在TiO2‒x及MoO2之间形成强化学键合,不仅可以作为电荷传输的快速通道提高层间电荷传递效率,还可以保护氧空位不被氧化从而提高肖特基结的稳定性.(3) 肖特基结异质结构中产生的肖特基势垒可以有效地抑制电子从MoO2向TiO2‒x的反向转移,从而抑制电子和空穴的复合,提升光生电子的利用率.(4) 助催化剂效应.金属性MoO2充当助催化剂,极大地降低了H2生成过程所需的吉布斯自由能,提升了热力学产氢性能.得益于上述效应的协同作用,TiO2‒x@C/MoO2催化剂的光催化析氢速率显著提高,达到506μmol g‒1 h‒1,分别比TiO2‒x和TiO2‒x@C大125.5倍和15.8倍.同时,由于表面碳层的保护作用,该催化剂在循环使用27h后产氢速率无明显变化,表现出较好的稳定性.此外,光催化四环素降解及Cr(VI)还原实验进一步证实了该肖特基结中光生电荷的有效分离.综上,本文设计思路和合成策略为构筑强耦合肖特基结光催化剂提供一定的参考.

关键词: 氧空位, 二氧化钛, 氧化钼, 碳层, 产氢, 肖特基结

Abstract:

Limited solar light harvesting, sluggish charge transfer kinetics, and inferior affinity for adsorbed hydrogen species (H*) severely restrict the photocatalytic hydrogen generation activity of TiO2 photocatalysts. Herein, we present a novel TiO2-x@C/MoO2 Schottky junction prepared via a simple one-step in situ phase-transition-regulation strategy. Crucially, the abundant oxygen vacancies in TiO2-x@C/MoO2 narrow the bandgap and introduce defects to improve the photoresponse. The strongly bonded carbon layer not only serves as a fast charge-transport channel to improve the interlayer charge transfer efficiency but also protects oxygen vacancies from oxidation. Moreover, the Schottky barrier effectively impairs the recombination of electrons and holes and promotes the utilization of photogenerated electrons. Furthermore, the MoO2 cocatalyst optimizes the Gibbs free energy for H2 evolution. As a result of the favorable synergy, the resulting TiO2-x@C/MoO2 presents a significantly enhanced photocatalytic H2 production rate of 506 μmol g-1 h-1 compared to those of TiO2-x and TiO2-x@C (125.5- and 15.8-times larger, respectively). Moreover, outstanding stability over 27 h was achieved because of the protection provided by the surface carbon layer. This ingenious design and facile synthetic strategy offer exciting avenues for the design of strongly coupled Schottky junction photocatalysts for efficient solar-to-chemical conversions.

Key words: Oxygen vacancy, TiO2, MoO2, Carbon layer, H2 evolution, Schottky junction