催化学报 ›› 2024, Vol. 67: 102-111.DOI: 10.1016/S1872-2067(24)60146-4

• 论文 • 上一篇    下一篇

用于糠醛和废物高值化转化为手性N-芳基天冬氨酸的化学/酶级联反应

路光辉, 余健, 李宁()   

  1. 华南理工大学食品科学与工程学院, 广东广州 510640
  • 收稿日期:2024-07-03 接受日期:2024-09-18 出版日期:2024-11-30 发布日期:2024-11-30
  • 通讯作者: 李宁
  • 基金资助:
    国家重点研发计划(2021YFC2102700);国家自然科学基金(21971076)

A chemoenzymatic cascade for sustainable production of chiral N-arylated aspartic acids from furfural and waste

Guang-Hui Lu, Jian Yu, Ning Li()   

  1. School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2024-07-03 Accepted:2024-09-18 Online:2024-11-30 Published:2024-11-30
  • Contact: Ning Li
  • Supported by:
    National Key Research and Development Program(2021YFC2102700);National Natural Science Foundation of China(21971076)

摘要:

生物质转化和废物升级再造是发展可循环生物经济的重要措施. 糠醛是一种重要的生物基平台化合物, 由秸秆和玉米芯等农业废弃物中的半纤维素水解/脱水得到, 具有碳中性和可再生等绿色化学属性. 硝基酚(NPs)是工业废水中一类常见的污染物, 具有强烈的致畸性和致癌性. 化学/酶级联反应是在一个反应器中进行化学催化和酶催化的多步反应, 且无需进行中间体的分离纯化. 化学/酶级联反应结合了两者的优点, 即前者强劲的反应活性、稳定性和广阔的底物谱以及后者较好的选择性, 为合成化学注入了新的契机.

本文报道了一个集成电催化、光催化和生物催化转化糠醛和废物NPs合成手性N-芳基天冬氨酸的化学/酶级联反应途径. 利用催化剂工程和反应工程策略(包括发现强效光催化剂—5,10,15,20-四(4-羧基苯基)卟啉(TCPP)), 采用连续流技术, 提高溶氧和成对电合成解决光/电催化体系间的不兼容性, 提高同步光/电催化氧化糠醛合成马来酸(MA)和富马酸(FA)效率. 研究结果表明, 在阴极室利用反应动力学上更有利的NPs还原反应替换动力学缓慢的析氢反应, 可有效地促进阳极室的电催化氧化反应, 即糠醛氧化为糠酸(FCA), 5-羟基-2(5H)-呋喃酮(HFO)氧化为MA及富马酸半醛氧化为FA. 选用TCPP作为光催化剂不仅可以降低电催化剂4-乙酰氨基-2,2,6,6-四甲基哌啶-N-氧自由基对光催化氧化的干扰, 而且可以促进光催化氧化FCA合成HFO. 与分批式光反应器相比, 管式连续流光催化不仅能增强传质和改善光透性, 提高光催化氧化效率, 而且易于放大和调控. 增强溶氧能有效促进光/电催化氧化糠醛合成MA和FA. 在分批补料工艺中, MA/FA的总时空产率(STY)接近2.8 g L-1 h-1, 产品滴度达28.3 g L-1. 此外, 研究还发现可以直接利用太阳光驱动MA/FA的光电合成, 其STY高达3.6 g L-1 h-1. MA的选择性可以通过改变缓冲液浓度实现调控; 当碳酸盐浓度降至0.25 mol L-1时, MA选择性和产率可提高到89%. 成对电合成策略不仅大大提高了阳极室MA的合成效率, 而且还能使废物NPs在阴极上还原为有用的氨基苯酚. 借助MA顺反异构酶和乙二胺-N,N'-二丁二酸裂解酶构成的双酶级联反应, 可将两个电极室中形成的产物进一步转化为高附加值的手性N-芳基(S)-天冬氨酸.

综上, 本文展示了集成化学/酶催化在有机合成中的巨大潜力, 提出的一种集成催化方法可将生物质转化和废物升级再造结合起来, 从而实现可持续生产, 将为生物质和废物的高值化转化提供新思路.

关键词: 不对称合成, 生物质转化, 连续流光催化, 成对电合成, 废物升级再造

Abstract:

Both biomass valorization and waste upcycling are important routes to sustain the circular bioeconomy. In this work, we present a chemoenzymatic cascade for selective synthesis of chiral N-arylated aspartic acids from biomass-derived furfural and waste nitrophenols (NPs) by merging robust photo- and electrocatalysis with stereoselective biocatalysis. Concurrent photoelectrocatalytic oxidation of furfural into maleic acid (MA) and fumaric acid (FA) was significantly enhanced by combining catalyst and reaction engineering strategies including identification of a powerful photocatalyst meso-tetra(4-carboxyphenyl)porphyrin, continuous flow technique, enhancing dissolved O2 and paired electrosynthesis. The overall space-time yield (STY) approached 2.8 g L-1 h-1 in a fed-batch process, with the product titer of 28.3 g L-1. Besides, photoelectrosynthesis of MA/FA was effectively fueled by sunlight, with the STY of up to 3.6 g L-1 h-1. Both MA selectivity and yield could be facilely improved to around 89% by reducing the buffer concentrations. Paired electrosynthesis strategy not only resulted in greatly improved MA production at the anode, but also enabled NPs upcycling into value-added aminophenols (APs) at the cathode. The products formed in the two electrode chambers were converted into N-arylated (S)-aspartic acids by a bienzymatic cascade. This work presents a multicatalytic approach for integrating selective biomass valorization and waste upcycling towards sustainable manufacture.

Key words: Asymmetric synthesis, Biomass conversion, Continuous flow photocatalysis, Paired electrosynthesis, Waste upcycling