催化学报 ›› 2022, Vol. 43 ›› Issue (12): 2966-2986.DOI: 10.1016/S1872-2067(22)64121-4
收稿日期:
2022-03-29
接受日期:
2022-05-04
出版日期:
2022-12-18
发布日期:
2022-10-18
通讯作者:
杨雪晶,龚鸣
基金资助:
Jianxiang Wua, Xuejing Yangb,#(), Ming Gonga,*(
)
Received:
2022-03-29
Accepted:
2022-05-04
Online:
2022-12-18
Published:
2022-10-18
Contact:
Xuejing Yang, Ming Gong
Supported by:
摘要:
甘油(丙三醇)是一种重要的生物质基平台分子, 也是生物柴油制备过程中产生的副产物. 单纯将粗甘油经分离、提纯制取精制甘油存在成本高和用途单一的缺点, 开发高效的粗甘油转化方法可以提升其附加值, 进而提高资源利用率和延伸生物质基材料产业链. 甘油是生物质基平台分子中氢含量最高的分子之一, 可通过氧化还原、脱水等过程形成多种含碳短链能源化学品. 与传统的热催化相比, 电催化不仅能在温和的条件下实现粗甘油的选择性转化, 还可使其与阴极发生耦合反应, 生成氢气. 然而, 甘油的电催化氧化微观机制复杂, 涉及诸多反应途径及多个电子和质子转移过程, 如何合理设计可高选择性地催化生成目标产物的催化剂是实现生物甘油高效转化的关键.
本文以甘油电催化氧化产物的选择性调控为核心, 总结了甘油电催化氧化(GOR)中催化剂设计和机理研究领域的最新进展, 旨在阐述GOR过程及催化剂的构效关系, 并为今后设计开发高效GOR催化剂提供参考. 首先, 结合原位分析和理论计算等领域的研究结果, 系统地总结了GOR过程中电位、催化剂结构和组成以及电解质对催化剂性能的影响, 阐述了反应过程中的催化机理. 针对GOR活性较高时, 甘油容易强吸附在催化剂表面形成中间体进而毒化催化剂的现象, 介绍了通过金属原子吸附、形成合金或界面修饰等方法在催化剂中引入金属或金属氧化物, 并考察催化剂活性中心、甘油吸附构型、电子效应以及电子结构等对产物分布的影响. 目前, 有关GOR催化剂构效关系的研究主要集中在贵金属催化剂上; 为推进生物甘油转化的实际应用, 未来应致力于研究如何开发价格低廉的非贵金属催化剂, 特别是应用于甘油电重整制氢和甘油燃料电池等领域的催化剂. 已报道的非贵金属催化剂虽然有较好的稳定性, 但其通常表现出较高的过电位, 并且催化甘油生成的主要产物为低价值产物(碳酸盐, 草酸盐和甲酸盐等). 综上, 未来可以利用先进的合成方法、表征技术和理论计算手段, 在分子水平充分、深入地认识甘油氧化的途径, 进而合理地设计开发出低成本、高性能、抗中毒的电催化剂, 为实现粗甘油电催化氧制氢或转化为高附加值化学品的实际应用提供借鉴.
吴建祥, 杨雪晶, 龚鸣. 甘油电催化氧化的研究进展:催化剂、机理和应用[J]. 催化学报, 2022, 43(12): 2966-2986.
Jianxiang Wu, Xuejing Yang, Ming Gong. Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device[J]. Chinese Journal of Catalysis, 2022, 43(12): 2966-2986.
Fig. 1. Various value-added chemicals generated during the electrochemical oxidation of glycerol. For the “all-formic-acid” pathway, a total of 8 electrons are needed for obtaining 3 formic acid molecules.
Catalyst | Electrolyte | Condition | Product and selectivity | Ref. |
---|---|---|---|---|
Pt9Bi1/C | 2 mol/L glycerol + 0.5 mol/L NaOH | 0.55 V vs. RHE | glyceraldehyde 79.6% | [ |
Pt/C | 0.1 mol/L glycerol + 0.5 mol/L H2SO4 | 1.1 V vs. SHE | glyceric acid 57.8% | [ |
Pt5Ru5/C | 0.1 mol/L glycerol + 0.5 mol/L H2SO4 | 1.1 V vs. SHE | dihydroxyacetone 35.0% | [ |
Pt/GNS | 0.5 mol/L glycerol + 0.5 mol/L KOH | 0.2 V vs. SCE | glycolate 65.4% | [ |
PtNi/GNS | 0.5 mol/L glycerol + 0.5 mol/L KOH | 0.1 V vs. SCE | glycerate 47.7% | [ |
PtRuNi/GNS | 0.5 mol/L glycerol + 0.5 mol/L KOH | 0.2 V vs. SCE | glyceraldehyde 39.2% | [ |
PtRhNi/GNS | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.4 V vs. SCE | oxalate 37.6% | [ |
PtAg skeleton | 0.5 mol/L glycerol + 0.5 mol/L KOH | 0.7 V vs. RHE | dihydroxyacetone 82.6% | [ |
Pt4Au6@Ag | 0.5 mol/L glycerol + 0.5 mol/L KOH | 1.1 V vs. RHE | dihydroxyacetone 77.1% | [ |
PtSb/C | 0.1 mol/L glycerol + 0.5 mol/L H2SO4 | 0.797 V vs. SHE | dihydroxyacetone 61.4% | [ |
Pt/ATCP-CP-BZD-CNT | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.64 V vs. SCE | formate 66% | [ |
Pt-Sn/ATCP-CP-BZD-CNT | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.74 V vs. SCE | formate 70% | [ |
Ptp-Bi | 0.1 mol/L glycerol + 0.1 mol/L NaOH | 0.75 V vs. RHE | glycerate | [ |
Pt70Pd24Ni6/rGO | 0.5 mol/L glycerol + 1.0 mol/L KOH | -0.2 V vs. SCE | hydroxypyruvate | [ |
Pd/CNT | 1.0 mol/L glycerol + 6.0 mol/L KOH | 0.2 V vs. SHE | tartronate ~60% | [ |
PdAg3/CNT | 1.0 mol/L glycerol + 6.0 mol/L KOH | 0.2 V vs. SHE | oxalate 32% | [ |
Pd NCs | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.4 V vs. SCE | glyceraldehyde 61.2% | [ |
Pt@Pd NCs | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.4 V vs. SCE | glycolate ~40% | [ |
PdMn/C | 0.1 mol/L glycerol + 0.1 mol/L NaOH | 0.8 V vs. RHE | glycerate ~56% | [ |
P-doped Pd/CNT | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.13 V vs. Ag/AgCl | dihydroxyacetone 90.8% | [ |
Pd-CNx/G | 0.5 mol/L glycerol + 0.5 mol/L NaOH | 0 V vs. Hg/HgO | glycerate ~32% | [ |
Pd nanocubes | 0.2 mol/L glycerol + 0.1 mol/L KOH | 0.87 V vs. RHE | tartronate 99% | [ |
Pd-CNx/G | 0.5 mol/L glycerol + 0.5 mol/L NaOH | 0.2 V vs. Hg/HgO | glycolic acid ~40% | [ |
Pd/MWCNT | 5wt% glycerol +2 mol/L KOH | -0.6 vs. Ag/AgCl | oxalate | [ |
Bi-modified Pd-NC | 0.1 mol/L glycerol + 0.1 mol/L NaOH | 0.35 V vs. RHE | dihydroxyacetone | [ |
FeCo@Fe@Pd/MWCNT-SO3H | 0.5 mol/L glycerol + 1 mol/L KOH | 0.16 V vs. Ag/AgCl | CO2 | [ |
Au/C-AQ | 1 mol/L glycerol + 8 mol/L KOH | -0.1 V vs. RHE | tartronate 61.2% | [ |
Au/C-NC | 1 mol/L glycerol + 8 mol/L KOH | -0.1 V vs. RHE | tartronate 61.8% | [ |
Au-CB | 0.5 mol/L glycerol +0.5 mol/L NaOH | -0.2 V vs. Hg/HgO | glyceraldehyde 34.5% | [ |
Au-PmAP/G | 0.5 mol/L glycerol +0.5 mol/L NaOH | -0.2 V vs. Hg/HgO | glyceraldehyde 42.2% | [ |
Au-P4P/rGO | 0.5 mol/L glycerol +0.5 mol/L NaOH | -0.2 V vs. Hg/HgO | glyceraldehyde 57.4% | [ |
Au-P4P/G | 0.5 mol/L glycerol +0.5 mol/L NaOH | -0.2 V vs. Hg/HgO | glyceraldehyde 68.6% | [ |
Au | 0.1 mol/L glycerol + 1 mol/L KOH | 1.0 V vs. RHE | glycolate | [ |
RA-Au | 0.1 mol/L glycerol + 1 mol/L KOH | 1.0 V vs. RHE | glycolate 41.2% | [ |
AuPt | 0.5 mol/L glycerol + 1 mol/L KOH | 0.45 V vs. RHE | lactic acid 73% | [ |
PdAu@Ag | 0.1 mol/L glycerol + 0.1 mol/L KOH | 0.9 V vs. RHE | dihydroxyacetone 70.1% | [ |
Au@Ag | 0.1 mol/L glycerol + 0.1 mol/L KOH | 1.1 V vs. RHE | glycolate 31.6% | [ |
Bulk Ag | 0.1 mol/L glycerol + 0.1 mol/L NaOH | -1.125 V vs. RHE | formic, glycolic and glyceric acids | [ |
PtxRuy/C | 0.1 mol/L glycerol + 0.1 mol/L HClO4 | 0.45 V vs. SCE | glyceric acid | [ |
PtxRhy/C | 0.1 mol/L glycerol + 0.1 mol/L HClO4 | 0.45 V vs. SCE | tartronic acid | [ |
Table 1 Summary of the noble metal-based electrocatalysts and their performances for GOR.
Catalyst | Electrolyte | Condition | Product and selectivity | Ref. |
---|---|---|---|---|
Pt9Bi1/C | 2 mol/L glycerol + 0.5 mol/L NaOH | 0.55 V vs. RHE | glyceraldehyde 79.6% | [ |
Pt/C | 0.1 mol/L glycerol + 0.5 mol/L H2SO4 | 1.1 V vs. SHE | glyceric acid 57.8% | [ |
Pt5Ru5/C | 0.1 mol/L glycerol + 0.5 mol/L H2SO4 | 1.1 V vs. SHE | dihydroxyacetone 35.0% | [ |
Pt/GNS | 0.5 mol/L glycerol + 0.5 mol/L KOH | 0.2 V vs. SCE | glycolate 65.4% | [ |
PtNi/GNS | 0.5 mol/L glycerol + 0.5 mol/L KOH | 0.1 V vs. SCE | glycerate 47.7% | [ |
PtRuNi/GNS | 0.5 mol/L glycerol + 0.5 mol/L KOH | 0.2 V vs. SCE | glyceraldehyde 39.2% | [ |
PtRhNi/GNS | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.4 V vs. SCE | oxalate 37.6% | [ |
PtAg skeleton | 0.5 mol/L glycerol + 0.5 mol/L KOH | 0.7 V vs. RHE | dihydroxyacetone 82.6% | [ |
Pt4Au6@Ag | 0.5 mol/L glycerol + 0.5 mol/L KOH | 1.1 V vs. RHE | dihydroxyacetone 77.1% | [ |
PtSb/C | 0.1 mol/L glycerol + 0.5 mol/L H2SO4 | 0.797 V vs. SHE | dihydroxyacetone 61.4% | [ |
Pt/ATCP-CP-BZD-CNT | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.64 V vs. SCE | formate 66% | [ |
Pt-Sn/ATCP-CP-BZD-CNT | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.74 V vs. SCE | formate 70% | [ |
Ptp-Bi | 0.1 mol/L glycerol + 0.1 mol/L NaOH | 0.75 V vs. RHE | glycerate | [ |
Pt70Pd24Ni6/rGO | 0.5 mol/L glycerol + 1.0 mol/L KOH | -0.2 V vs. SCE | hydroxypyruvate | [ |
Pd/CNT | 1.0 mol/L glycerol + 6.0 mol/L KOH | 0.2 V vs. SHE | tartronate ~60% | [ |
PdAg3/CNT | 1.0 mol/L glycerol + 6.0 mol/L KOH | 0.2 V vs. SHE | oxalate 32% | [ |
Pd NCs | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.4 V vs. SCE | glyceraldehyde 61.2% | [ |
Pt@Pd NCs | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.4 V vs. SCE | glycolate ~40% | [ |
PdMn/C | 0.1 mol/L glycerol + 0.1 mol/L NaOH | 0.8 V vs. RHE | glycerate ~56% | [ |
P-doped Pd/CNT | 0.5 mol/L glycerol + 0.5 mol/L KOH | -0.13 V vs. Ag/AgCl | dihydroxyacetone 90.8% | [ |
Pd-CNx/G | 0.5 mol/L glycerol + 0.5 mol/L NaOH | 0 V vs. Hg/HgO | glycerate ~32% | [ |
Pd nanocubes | 0.2 mol/L glycerol + 0.1 mol/L KOH | 0.87 V vs. RHE | tartronate 99% | [ |
Pd-CNx/G | 0.5 mol/L glycerol + 0.5 mol/L NaOH | 0.2 V vs. Hg/HgO | glycolic acid ~40% | [ |
Pd/MWCNT | 5wt% glycerol +2 mol/L KOH | -0.6 vs. Ag/AgCl | oxalate | [ |
Bi-modified Pd-NC | 0.1 mol/L glycerol + 0.1 mol/L NaOH | 0.35 V vs. RHE | dihydroxyacetone | [ |
FeCo@Fe@Pd/MWCNT-SO3H | 0.5 mol/L glycerol + 1 mol/L KOH | 0.16 V vs. Ag/AgCl | CO2 | [ |
Au/C-AQ | 1 mol/L glycerol + 8 mol/L KOH | -0.1 V vs. RHE | tartronate 61.2% | [ |
Au/C-NC | 1 mol/L glycerol + 8 mol/L KOH | -0.1 V vs. RHE | tartronate 61.8% | [ |
Au-CB | 0.5 mol/L glycerol +0.5 mol/L NaOH | -0.2 V vs. Hg/HgO | glyceraldehyde 34.5% | [ |
Au-PmAP/G | 0.5 mol/L glycerol +0.5 mol/L NaOH | -0.2 V vs. Hg/HgO | glyceraldehyde 42.2% | [ |
Au-P4P/rGO | 0.5 mol/L glycerol +0.5 mol/L NaOH | -0.2 V vs. Hg/HgO | glyceraldehyde 57.4% | [ |
Au-P4P/G | 0.5 mol/L glycerol +0.5 mol/L NaOH | -0.2 V vs. Hg/HgO | glyceraldehyde 68.6% | [ |
Au | 0.1 mol/L glycerol + 1 mol/L KOH | 1.0 V vs. RHE | glycolate | [ |
RA-Au | 0.1 mol/L glycerol + 1 mol/L KOH | 1.0 V vs. RHE | glycolate 41.2% | [ |
AuPt | 0.5 mol/L glycerol + 1 mol/L KOH | 0.45 V vs. RHE | lactic acid 73% | [ |
PdAu@Ag | 0.1 mol/L glycerol + 0.1 mol/L KOH | 0.9 V vs. RHE | dihydroxyacetone 70.1% | [ |
Au@Ag | 0.1 mol/L glycerol + 0.1 mol/L KOH | 1.1 V vs. RHE | glycolate 31.6% | [ |
Bulk Ag | 0.1 mol/L glycerol + 0.1 mol/L NaOH | -1.125 V vs. RHE | formic, glycolic and glyceric acids | [ |
PtxRuy/C | 0.1 mol/L glycerol + 0.1 mol/L HClO4 | 0.45 V vs. SCE | glyceric acid | [ |
PtxRhy/C | 0.1 mol/L glycerol + 0.1 mol/L HClO4 | 0.45 V vs. SCE | tartronic acid | [ |
Fig. 2. (a) Glycerol on Pt(111) and Pt(100) with different forms of adsorption in acidic media. Cyclic voltammograms for 0.1 mol/L of glycerol (b), glyceraldehyde (c), and dihydroxyacetone (d) oxidation on Pt(111) (black line) and Pt(100) (red line) in HClO4, respectively. Corresponding liquid product concentration as measured by online HPLC (e-g) and corresponding mass signal (m/z = 44) related to the production of CO2 as measured by OLEMS (h-j). Reprinted with permission from Ref. 143. Copyright 2016, American Chemical Society.
Fig. 3. (a) Peak current density (jpeak) vs. cycle number for selected values of θBi. Linear sweep voltammetry of the 1st cycle for GOR in 0.1 mol/L NaOH + 0.1 mol/L glycerol on Pt with several θBi. (b) FTIR spectra obtained in 0.1 mol/L NaOH + 0.1 mol/L Glycerol (Ptp) and 0.1 mol/L NaOH + 0.1 mol/L Glycerol + 10-5 mol/L of Bi2O3 (Ptp-Bi). (c) Reaction pathways for the GOR on Ptp and Ptp-Bi. The link between the reactant, intermediates, and product was assessed including some hypothetical, nonexperimentally determined intermediates (except for CO). Reprinted with permission from Ref. [104]. Copyright 2019, American Chemical Society.
Fig. 4. (a) Cyclic voltammograms (CV) of Pd-CB, Pd-CNx, and Pd-CNx/G in 0.5 mol/L glycerol + 0.5 mol/L NaOH with a scan rate of 50 mV/s. (b) Product selectivity of Pd NPs on different supports (CB, CNx, CNx/G) at various potentials. The catalyst loading is 0.1 mg/cm2, and the working electrode is glassy carbon. Request the permission from Ref. 109. Copyright 2015, American Chemical Society.
Fig. 5. (a) High-angle annular dark-field (HAADF) TEM image; (b) Distribution of the GOR products obtained on the catalysts of FeCo@Fe@Pd/MWCNT-COOH and Pd/MWCNT-COOH. Reprinted with permission from Ref. [112]. Copyright 2015, the Royal Society of Chemistry.
Fig. 6. (a) Schematic of the GOR mechanism with OH and adsorption of intermediates on the surface of planar and RA-Au catalysts. GLY: glycerol, GAD: glyceraldehyde, GLA: glyceric acid, GCA: glycolic acid, FA: formic acid. Product selectivity and glycerol conversion as a function of applied potential (Vg) in the reaction for 4 h over planar Au (b) and RA-Au (c) catalysts. Reprinted with permission from Ref. 115. Copyright 2021 American Chemical Society.
Fig. 7. (a) Electrocatalytic oxidation of glycerol with different structure catalysts. (b) Liquid GOR products selectivity on the as-synthesized (b) Pt/C, (c) Pt3Ru1/C, (d) Pt2Rh1/C nanocatalysts versus electrode potentials, in 0.1 mol/L 13C-labeled glycerol + 0.1 mol/L HClO4 solution (D2O:H2O = 1:4, v/v), at 60 °C for 8 h. Left to right: blue bar, glyceraldehyde; red bar, glyceric acid; black bar, glycolic acid; green bar, glyoxylic acid; yellow bar, tartronic acid; aqua bar, dihydroxyacetone. Reprinted with permission from Ref. 118. Copyright 2016, American Chemical Society.
Catalyst | Electrolyte | Condition | Product and selectivity | Ref. |
---|---|---|---|---|
Ni/C | 0.1 mol/L glycerol +0.1 mol/L KOH | ‒0.7 V vs. Hg/HgO | glycerate 29.8% | [ |
ALD (TiO2)-Ni/C | 0.1 mol/L glycerol +0.1 mol/L KOH | ‒0.7 V vs. Hg/HgO | glycerate 24% | [ |
Ni/C | 0.1 mol/L glycerol +0.1 mol/L NaOH | ‒1.6 V vs. RHE | formate 32.2% | [ |
NiCo/C | 0.1 mol/L glycerol +0.1 mol/L NaOH | ‒1.6 V vs. RHE | formate 7.5% | [ |
NiFe/C | 0.1 mol/L glycerol +0.1 mol/L NaOH | ‒1.6 V vs. RHE | formate 4% | [ |
NiFeCO/C | 0.1 mol/L glycerol +0.1 mol/L NaOH | ‒1.6 V vs. RHE | formate 34.1% | [ |
NiOx/MWCNT-Ox | 0.1 mol/L glycerol +1 mol/L KOH | 1.5 V vs. RHE | oxalate | [ |
CoNi2S4/PANI | 1 mol/L glycerol + 1 mol/L NaOH | 0.37 V vs. SCE | CO2 | [ |
Poly[Ni(salen)] | 1 mol/L glycerol + 1 mol/L NaOH | 0.4 V vs. Ag/AgCl | formate | [ |
NixBi1-x | 0.1 mol/L glycerol + 1 mol/L KOH | 1.3 V vs. Hg/HgO | glycerate 49.6% | [ |
CuCo2O4 | 0.1 mol/L glycerol + 0.1 mol/L KOH | 1.30 V vs. RHE | formate 80.6% | [ |
Ni-Mo-N/CFC | 0.1 mol/L glycerol + 1 mol/L KOH | 1.30 V vs. RHE | formate 92.48% | [ |
CuO | 0.1 mol/L Na2B4O7 + 0.1 mol/L glycerol | 1.20 V vs. RHE | dihydroxyacetone 60% | [ |
MnO2/CP | 0.2 mol/L glycerol + 5 mmol/L H2SO4 | 1.36 V vs.RHE | formic acid | [ |
CoOx | 0.1 mol/L Na2B4O7 + 0.1 mol/L glycerol | 1.50 V vs. RHE | dihydroxyacetone 45% | [ |
CoOxHy | 0.1 mol/L borate buffer + 0.05 mol/L glycerol | 1.56 V vs. RHE | hydroxypyruvic acid 43.2% | [ |
Co-Bii/CF | 0.1 mol/L glycerol + 0.1 mol/L Na2B4O7 | 1.56 V vs. RHE | dihydroxyacetone 67% | [ |
Ni(OH)2 | 0.1 mol/L glycerol + 2 mol/L KOH | 1.50 V vs. RHE | formate 81.3% | [ |
Table 2 Summary of the non-noble metal-based electrocatalysts and their performances for GOR.
Catalyst | Electrolyte | Condition | Product and selectivity | Ref. |
---|---|---|---|---|
Ni/C | 0.1 mol/L glycerol +0.1 mol/L KOH | ‒0.7 V vs. Hg/HgO | glycerate 29.8% | [ |
ALD (TiO2)-Ni/C | 0.1 mol/L glycerol +0.1 mol/L KOH | ‒0.7 V vs. Hg/HgO | glycerate 24% | [ |
Ni/C | 0.1 mol/L glycerol +0.1 mol/L NaOH | ‒1.6 V vs. RHE | formate 32.2% | [ |
NiCo/C | 0.1 mol/L glycerol +0.1 mol/L NaOH | ‒1.6 V vs. RHE | formate 7.5% | [ |
NiFe/C | 0.1 mol/L glycerol +0.1 mol/L NaOH | ‒1.6 V vs. RHE | formate 4% | [ |
NiFeCO/C | 0.1 mol/L glycerol +0.1 mol/L NaOH | ‒1.6 V vs. RHE | formate 34.1% | [ |
NiOx/MWCNT-Ox | 0.1 mol/L glycerol +1 mol/L KOH | 1.5 V vs. RHE | oxalate | [ |
CoNi2S4/PANI | 1 mol/L glycerol + 1 mol/L NaOH | 0.37 V vs. SCE | CO2 | [ |
Poly[Ni(salen)] | 1 mol/L glycerol + 1 mol/L NaOH | 0.4 V vs. Ag/AgCl | formate | [ |
NixBi1-x | 0.1 mol/L glycerol + 1 mol/L KOH | 1.3 V vs. Hg/HgO | glycerate 49.6% | [ |
CuCo2O4 | 0.1 mol/L glycerol + 0.1 mol/L KOH | 1.30 V vs. RHE | formate 80.6% | [ |
Ni-Mo-N/CFC | 0.1 mol/L glycerol + 1 mol/L KOH | 1.30 V vs. RHE | formate 92.48% | [ |
CuO | 0.1 mol/L Na2B4O7 + 0.1 mol/L glycerol | 1.20 V vs. RHE | dihydroxyacetone 60% | [ |
MnO2/CP | 0.2 mol/L glycerol + 5 mmol/L H2SO4 | 1.36 V vs.RHE | formic acid | [ |
CoOx | 0.1 mol/L Na2B4O7 + 0.1 mol/L glycerol | 1.50 V vs. RHE | dihydroxyacetone 45% | [ |
CoOxHy | 0.1 mol/L borate buffer + 0.05 mol/L glycerol | 1.56 V vs. RHE | hydroxypyruvic acid 43.2% | [ |
Co-Bii/CF | 0.1 mol/L glycerol + 0.1 mol/L Na2B4O7 | 1.56 V vs. RHE | dihydroxyacetone 67% | [ |
Ni(OH)2 | 0.1 mol/L glycerol + 2 mol/L KOH | 1.50 V vs. RHE | formate 81.3% | [ |
Fig. 8. (a) NiOx/MCN for GOR. (b,c) Concentration of glycerol and GOR products as a function of time during electrolysis catalyzed by NiOx/MWCNT-Ox at 1.5 V vs. RHE. Reprinted with permission from Ref. 85. Copyright 2022, American Chemical Society.
Fig. 9. (a) CuCo2O4 for GOR; (b) Concentrations of glycerol and its oxidation products as a function of the total charge passed using CuCo2O4 as electrocatalyst at 0.42 V vs. Hg/HgO (1.30 V vs. RHE at pH = 13) in 0.1 mol/L KOH solution containing 0.1 mol/L glycerol. Reprinted with permission from Ref. 166. Copyright 2020, American Chemical Society.
Fig. 10. Electrocatalytic performances of the MnO2 catalysts. (a) Polarization curves of MnO2/CP anode with and without various alcohols at the scan rate of 2 mV/s. (b) iR-Corrected polarization curves of MnO2/CP anode in 0.005 mol/L H2SO4 with and without the addition of 0.2 mol/L glycerol at the scan rate of 2 mV/s. (c) Anodic potential comparison of MnO2/CP at different current densities (10, 20, 40, 60 and 80 mA/cm2) in 0.005 mol/L H2SO4 with and without 0.2 mol/L glycerol. (d) Tafel plots for glycerol oxidation and OER. (e) Chronopotentiometric curves of MnO2/CP for glycerol oxidation and OER at a constant current density of 10 mA/cm2. (f) Polarization curves over a MnO2/CP‖Pt/C/CP electrolyzer with and without 0.2 mol/L glycerol. (g) Comparison between GC-measured and theoretically calculated H2 quantities. (h) Chronopotentiometric curves of a MnO2/CP‖Pt/C/CP cell with and without 0.2 mol/L glycerol at 10 mA/cm2. Reprinted with permission from Ref. 90. Copyright 2021, John Wiley & Sons.
Fig. 11. (a) Series of ATR-FTIR spectra recorded during the potentiodynamic GOR (electrolyte: 0.1 mol/L glycerol in 0.5 mol/L H2SO4, scan rate: 10 mV/s). (b) ATR-FTIR spectra recorded about 3-4 s after electrolyte exchange from 0.5 mol/L H2SO4 to 0.1 mol/L glycerol containing 0.5 mol/L H2SO4 at different potentials. (c) ATR-FTIR spectra recorded about 1-2 s after electrolyte exchange from 0.5 mol/L H2SO4 to 0.1 mol/L glyceraldehyde + 0.5 mol/L H2SO4 solution at different potentials. (d) ATR-FTIR spectra recorded about 1.5 min (0.06, 0.1, 0.2 V) or about 1-2 s (0.3-0.7 V) after electrolyte exchange from 0.5 mol/L H2SO4 to 0.05 mol/L glyceric acid + 0.5 mol/L H2SO4 at different potentials. Reprinted with permission from Ref. 182. Copyright 2011, Elsevier.
Fig. 12. Proposed reaction pathways for glycerol oxidation in alkaline solution on AuPt catalysts on the basis. Reprinted with permission from Ref. 69. Copyright 2017, Elsevier.
Fig. 13. (a) Possible GOR reaction pathways to various value-added products in different alkaline solutions. (b) Scheme of the cation effect before and after the addition of the crown ethers. (c) FEs of the GOR products under 1.50 V vs. RHE for 30 min in different alkaline solutions + 0.1 mol/L glycerol with and without the crown ethers. In situ IRRAS of the GOR products under 1.50 V vs. RHE in 2 mol/L LiOH+0.1 mol/L glycerol (d) and 2 mol/L KOH + 0.1 mol/L glycerol (e) at a time resolution of 30 s. (f) Calculated adsorption energies of glycerol, glyceraldehyde and glycolaldehyde on the NiOOH slab without any cations, with K+ and with Li+. (g) The optimized adsorption structures of glycerol, glyceraldehyde and glycolaldehyde on the NiOOH slab without cations, with K+ and with Li+. Reprinted with permission from Ref. 53. Copyright 2022, John Wiley and Sons.
Fig. 14. (a) Schematic illustration of operando Raman measurement setup. (b) Raman spectra of Na2B4O7 supporting electrolyte, glycerol, and all possible oxidation products. (c) Lorentz fitting of the time-dependent operando Raman spectra of GEOR collected at 1.7? V vs. RHE. Reprinted with permission from Ref. 168. Copyright 2022, Elsevier.
Fig. 15. Process flow diagram of the electrocatalytic glycerol oxidation strategy with energy duties. Reprinted with permission from Ref. 46. Copyright 2017, American Chemical Society.
|
[1] | 刘润泽, 邵雪, 王畅, 戴卫理, 关乃佳. 甲醇制烃反应机理: 基础及应用研究[J]. 催化学报, 2023, 47(4): 67-92. |
[2] | 刘丹卿, 张丙兴, 赵国强, 陈建, 潘洪革, 孙文平. 原位电化学扫描探针显微镜技术在电催化领域的应用进展[J]. 催化学报, 2023, 47(4): 93-120. |
[3] | 叶艳文, 胡一鸣, 郑万彬, 贾爱平, 王瑜, 鲁继青. 配体覆盖的Ir催化剂上巴豆醛加氢反应: 金属-有机物界面促进活性和选择性[J]. 催化学报, 2023, 47(4): 265-277. |
[4] | Johannes A. Lercher. 三氧化钨催化糖分子选择裂解新机理及其对生物质利用的重要意义[J]. 催化学报, 2023, 46(3): 1-3. |
[5] | 黄志鹏, 杨阳, 穆骏驹, 李根恒, 韩建宇, 任濮宁, 张健, 罗能超, 韩克利, 王峰. 利用金属-自由基相互作用调控自由基的定向转化[J]. 催化学报, 2023, 45(2): 120-131. |
[6] | 周紫璇, 高鹏. 多相催化CO2加氢直接合成大宗化学品与液体燃料[J]. 催化学报, 2022, 43(8): 2045-2056. |
[7] | 林波, 夏梦阳, 许堡荣, 种奔, 陈子浩, 杨贵东. 仿生纳米结构的g-C3N4基光催化剂研究进展[J]. 催化学报, 2022, 43(8): 2141-2172. |
[8] | 蒋亚飞, 刘锦程, 许聪俏, 李隽, 肖海. 打破合成氨反应中线性标度关系的碗型活性位点设计: 来自LaRuSi及其同构电子化物的启示[J]. 催化学报, 2022, 43(8): 2183-2192. |
[9] | 郑汉, 杨正午, 孔祥栋, 耿志刚, 曾杰. 二氧化碳电还原为甲烷的研究进展[J]. 催化学报, 2022, 43(7): 1634-1641. |
[10] | Ernest Pahuyo Delmo, 王忆安, 王菁, 朱尚乾, 李铁怀, 秦雪苹, 田一博, 赵青蓝, Juhee Jang, 王一诺, 谷猛, 张莉莉, 邵敏华. 金属有机框架-离子液体混合催化剂用于电化学还原二氧化碳生成甲烷[J]. 催化学报, 2022, 43(7): 1687-1696. |
[11] | 王梦茹, 王奕, 牟效玲, 林荣和, 丁云杰. 1,3-丁二烯选择性加氢催化剂的设计策略以及构效关系[J]. 催化学报, 2022, 43(4): 1017-1041. |
[12] | 苏海胜, 常晓侠, 徐冰君. 表面增强振动光谱在电催化领域的运用: 基本原理、挑战和展望[J]. 催化学报, 2022, 43(11): 2757-2771. |
[13] | 曾辉炎, 曾衍铨, 漆俊, 顾龙, 洪恩纳, 司锐, 杨纯臻. 析氧反应中催化剂-电解质界面的质子动力学研究[J]. 催化学报, 2022, 43(1): 139-147. |
[14] | 张学鹏, 王红艳, 郑浩铨, 张伟, 曹睿. 分子催化剂催化水氧化过程及其O-O成键机理[J]. 催化学报, 2021, 42(8): 1253-1268. |
[15] | 邵方君, 姚子豪, 高怡静, 周强, 包志康, 庄桂林, 钟兴, 伍川, 魏中哲, 王建国. 双功能催化剂Ru2P在N-杂环加氢和无受体脱氢反应中的几何效应和电子效应[J]. 催化学报, 2021, 42(7): 1185-1194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||