催化学报 ›› 2022, Vol. 43 ›› Issue (8): 2045-2056.DOI: 10.1016/S1872-2067(22)64107-X
收稿日期:
2022-03-07
接受日期:
2022-04-07
出版日期:
2022-08-18
发布日期:
2022-06-20
通讯作者:
高鹏
基金资助:
Zixuan Zhoua,b, Peng Gaoa,b,*()
Received:
2022-03-07
Accepted:
2022-04-07
Online:
2022-08-18
Published:
2022-06-20
Contact:
Peng Gao
About author:
Prof. Peng Gao (Chinese Academy of Sciences Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS)) received Ph.D. degree in chemical engineering and Technology from University of Chinese Academy of Sciences and Institute of Coal Chemistry, CAS in 2014. Since at the end of 2013, he has been working in SARI, CAS. He was honored with the Catalysis Rising Star Award from the Catalysis Society of China in 2021, Top Young Talents in Shanghai and Shanghai Rising-Star Award in 2019, and best reviewer award 2021 of Journal of Energy Chemistry. His research interests mainly focus on the conversion of carbon one molecular (CO2, CO and CH3OH, etc.) into chemicals and fuels via heterogeneous catalysis. He has published more than 60 peer-reviewed papers, which have been cited more than 3000 times (H index = 30), and was awarded as one of the top 1% of highly cited authors in Royal Society of Chemistry journals, 2019. More than 10 Chinese patents have been authorized respect to his work.
Supported by:
摘要:
借助可再生能源获取电能分解水制得的氢气, 将CO2转化为大宗化学品和液体燃料, 不仅能实现温室气体的减排, 而且有助于解决对化石燃料的过度依赖以及可再生能源的存储等问题. 目前, 实现CO2转化工业应用的最大障碍之一是缺乏高效稳定的催化剂. 此外, 将CO2分子转化为更高附加值的C2+(含有两个或两个以上碳原子的烃)产物比转化为简单的碳一分子产品更加困难.
本文系统介绍了本课题组开发的CO2加氢制甲醇、低碳烯烃、芳烃以及汽油与航空煤油馏分烃等高效多相催化剂的设计与合成思路, 通过理论计算与实验研究相结合, 深入探讨了这些催化剂的结构-性能关系、活性位点的性质和反应机制. 期望进一步推动CO2加氢制大宗化学品和液体燃料的多相催化剂的基础研究和工业应用. 对于CO2加氢制甲醇, 传统催化剂面临活性不高、逆水煤气变换反应使得选择性偏低、副产物水易导致纳米颗粒烧结失活等问题, 以高铜含量碱修饰水滑石材料为前驱体, 创制了纳米限域结构铜基催化剂, 在5000吨/年CO2制甲醇装置上完成了该催化剂的工业测试; 由于氧化铟(In2O3)催化剂具有更高的甲醇选择性, 近年来备受研究者广泛关注, 本课题组研究表明In2O3在CO2加氢反应中对晶相和暴露面的结构敏感性, 并创制了一种主要暴露(104)面的六方相材料, 当反应温度为360 °C时仍有利于甲醇合成.
基于反应耦合策略, 在多功能催化剂上可以将CO2加氢制甲醇与甲醇制烃类反应耦合, 或者将RWGS与费托合成以及烯烃异构/环化/芳构反应耦合, 由此可实现CO2加氢直接合成各种C2+产品. 多功能催化剂开发过程中也面临着与CO2加氢制甲醇反应类似的问题, 但反应网络更加复杂. 本文阐明了不同功能组分的结构与物化性质以及不同组分的耦合方式对催化剂上CO2加氢反应性能的影响规律与影响机制, 并揭示了不同耦合反应的中间物种的演化与反应机制. 另外, 对该领域未来重要的研究方向与各类催化剂的工业应用前景也进行了讨论, 以期为更高效催化剂的开发提供新的思路和策略, 并加深对CO2加氢反应网络的理解.
周紫璇, 高鹏. 多相催化CO2加氢直接合成大宗化学品与液体燃料[J]. 催化学报, 2022, 43(8): 2045-2056.
Zixuan Zhou, Peng Gao. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis[J]. Chinese Journal of Catalysis, 2022, 43(8): 2045-2056.
Fig. 1. (a) Morphologies of the Cu-Zn-Al-Zr-LDH precursor, calcined CuO-ZnO-Al2O3-ZrO2 composite oxide, and reduced Cu-ZnO-Al2O3-ZrO2 catalyst. Reproduced with permission from Ref. [22]. Copyright 2017, Elsevier. (b) Comparison of the CH3OH selectivity obtained by the unmodified and fluorine-modified Cu-ZnO-Al2O3-ZrO2 catalysts for CO2 hydrogenation. Inset: formation of fluorinated Cu-Zn-Al-Zr LDH achieved via the introduction of (AlF6)3- ions into layers. (c) Results of the stability test conducted on the Cu-ZnO-Al2O3-ZrO2 catalyst for CO2 hydrogenation to methanol derived from the phase-pure LDH precursor under the following reaction conditions: 250 °C, 5 MPa, 4000 h-1, and H2/CO2 = 3. Reproduced with permission from Refs. [21] and [28]. Copyright 2015 and 2016, Elsevier.
Fig. 2. (a) Schematic illustration of the most favorable CO2 hydrogenation pathways predicted to occur on the surface of cubic In2O3(110) [c-In2O3(110)], c-In2O3(111), hexagonal In2O3(012) [h-In2O3(012)], and h-In2O3(014). Effects of reaction temperature on the extent of CO2 conversion and CH3OH product selectivity (b) and on the CH3OH yield (c) in the reaction occurring over spherical c-In2O3 (c-In2O3-S) and h-In2O3 nanorod (h-In2O3-R) samples under the following reaction conditions: 300 °C, 5 MPa, 9000 mL gcat-1 h-1, and H2/CO2 = 3. (d) In situ diffuse reflectance infrared Fourier-transform spectroscopy data recorded for surface species formed from CO2 hydrogenation reaction occurring over h-In2O3-R. Reproduced with permission from Ref. [32]. Copyright 2020, Science.
Fig. 3. (a) Effect of the particle size of spent In2O3 (after reaction for 24 h) on the space-time yield of lower olefins from the CO2 hydrogenation reaction under the following reaction conditions: 350 °C, 3 MPa, 9000 mL gcat-1 h-1, and H2/CO2 = 3. Reproduced with permission from Ref. [40]. Copyright 2021 Elsevier. (b) High-resolution transmission electron microscopy images of In2O3 and In1-xZrxOy solid solution oxides. (c) CO2-TPD spectra for the reduced In2O3, ZrO2, and In1-xZrxOy oxides. (d) Energy profiles of the CO2 hydrogenation reaction to CH3OH conducted over the surfaces of In2O3 and In1-xZrxOy, reported in black and red, respectively. Reproduced with permission from Ref. [39]. Copyright 2018, American Chemical Society. (e) Effects of the crystal size and pore structure of the SAPO-34 zeolite on the C2=-C4= product selectivity and olefin/paraffin molecular ratio caused by the CO2 hydrogenation reaction conducted over bifunctional catalysts under the following reaction conditions of 380 °C, 3 MPa, 9000 mL gcat-1 h-1, and H2/CO2 = 3. Reproduced with permission from Ref. [42]. Copyright 2019, John Wiley and Sons.
Fig. 4. (a) Mechanism of the reaction of CO2 hydrogenation to produce aromatic compounds and isoparaffins occurring over the Na-Fe3O4/zeolite composite catalyst. Reproduced with permission from Ref. [67]. Copyright 2019, Royal Society of Chemistry. (b) Morphologies of hierarchical nanocrystalline HZSM-5 aggregates. Reproduced with permission from Ref. [34]. Copyright 2019, American Chemical Society. Transmission electron microscopy images of the short b-axis (c) and chain-like (d) nanocrystalline HZSM-5. (e) Proposed mechanism of the reaction of CO2 hydrogenation to produce aromatic compounds occurring over ZnZrOx/HZMS-5, and the effect of the acidic properties and pore structure of HZSM-5 on the distribution of the produced aromatic compounds. Reproduced with permission from Ref. [60]. Copyright 2021, Elsevier. (f) Catalytic performance of bifunctional catalysts and the sole In2O3 for the reaction of CO2 hydrogenation under the reaction conditions of 340 °C, 3 MPa, 9000 mL gcat-1 h-1, and H2/CO2 = 3, as well as CH3OH conversion over HZSM-5. Reproduced with permission from Ref. [38]. Copyright 2017, Springer Nature.
Fig. 5. (a) Effect of the proximity between the ZnZrOx and HZMS-5 components of the catalyst on system’s catalytic performance under the following reaction conditions: 315 °C, 3 MPa, 1020 mL gcat-1 h-1, and H2/CO2 = 3. (b) Product distribution without CO, CO2 conversion, and CO selectivity over ZnZrOx/HZMS-5 prepared by mixing ZnZrOx and HZSM-5 power by using an agate mortar with different reaction temperatures. Reproduced with permission from Ref. [60]. Copyright 2021, Elsevier. (c) Effect of the proximity between the In2O3 and HZMS-5 components of the catalyst on system’s catalytic performance under the reaction conditions detailed in Fig. 4(f). (d) Detail hydrocarbon distribution over In2O3/HZSM-5 prepared by mixing of granules (500-800 μm) of two components. Reproduced with permission from Ref. [38]. Copyright 2017, Springer Nature.
Fig. 6. Different catalyst systems reported in the literature for CO2-based Fischer-Tropsch synthesis and their main hydrocarbon products and typical selectivity values.
|
[1] | 陈宇卓, 王浩, 陆冰, 易倪, 曹亮, 王勇, 毛善俊. 用于高精度催化性能预测的精细结构敏感型深度学习框架[J]. 催化学报, 2023, 50(7): 284-296. |
[2] | 夏思源, 李奇远, 张仕楠, 许冬, 林秀, 孙露菡, 许景三, 陈接胜, 李国栋, 李新昊. Pd纳米立方体异质结尺寸依赖的电子界面效应对苯酚加氢反应的促进作用[J]. 催化学报, 2023, 49(6): 180-187. |
[3] | 孟帅奇, 李忠玉, 季宇, Anna Joelle Ruff, 刘珞, Mehdi D. Davari, Ulrich Schwaneberg. 电子转移途径中芳香族氨基酸的引入提高了细胞色素P450s的催化性能[J]. 催化学报, 2023, 49(6): 81-90. |
[4] | 刘丹卿, 张丙兴, 赵国强, 陈建, 潘洪革, 孙文平. 原位电化学扫描探针显微镜技术在电催化领域的应用进展[J]. 催化学报, 2023, 47(4): 93-120. |
[5] | 叶艳文, 胡一鸣, 郑万彬, 贾爱平, 王瑜, 鲁继青. 配体覆盖的Ir催化剂上巴豆醛加氢反应: 金属-有机物界面促进活性和选择性[J]. 催化学报, 2023, 47(4): 265-277. |
[6] | 刘润泽, 邵雪, 王畅, 戴卫理, 关乃佳. 甲醇制烃反应机理: 基础及应用研究[J]. 催化学报, 2023, 47(4): 67-92. |
[7] | Johannes A. Lercher. 三氧化钨催化糖分子选择裂解新机理及其对生物质利用的重要意义[J]. 催化学报, 2023, 46(3): 1-3. |
[8] | 曾繁林, 朱虎林, 王茹楠, 袁晓亚, 孙凯, 屈凌波, 陈晓岚, 於兵. 一种用于光催化C(sp2)‒H键官能团化通用的非均相钒酸铋催化剂[J]. 催化学报, 2023, 46(3): 157-166. |
[9] | 沙峰, 唐珊, 汤驰洲, 冯振东, 王集杰, 李灿. ZnZrOx固溶体催化剂表面羟基在CO2加氢制甲醇中的作用[J]. 催化学报, 2023, 45(2): 162-173. |
[10] | 黄志鹏, 杨阳, 穆骏驹, 李根恒, 韩建宇, 任濮宁, 张健, 罗能超, 韩克利, 王峰. 利用金属-自由基相互作用调控自由基的定向转化[J]. 催化学报, 2023, 45(2): 120-131. |
[11] | 林波, 夏梦阳, 许堡荣, 种奔, 陈子浩, 杨贵东. 仿生纳米结构的g-C3N4基光催化剂研究进展[J]. 催化学报, 2022, 43(8): 2141-2172. |
[12] | 王梦茹, 王奕, 牟效玲, 林荣和, 丁云杰. 1,3-丁二烯选择性加氢催化剂的设计策略以及构效关系[J]. 催化学报, 2022, 43(4): 1017-1041. |
[13] | 王集杰, Jittima Meeprasert, 韩哲, 王欢, 冯振东, 汤驰洲, 沙峰, 唐珊, 李冠娜, Evgeny A. Pidko, 李灿. TiO2负载的高分散Cd团簇催化剂高效催化CO2加氢制甲醇[J]. 催化学报, 2022, 43(3): 761-770. |
[14] | 吴建祥, 杨雪晶, 龚鸣. 甘油电催化氧化的研究进展:催化剂、机理和应用[J]. 催化学报, 2022, 43(12): 2966-2986. |
[15] | 苏海胜, 常晓侠, 徐冰君. 表面增强振动光谱在电催化领域的运用: 基本原理、挑战和展望[J]. 催化学报, 2022, 43(11): 2757-2771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||