催化学报 ›› 2022, Vol. 43 ›› Issue (8): 2045-2056.DOI: 10.1016/S1872-2067(22)64107-X

• 述评 • 上一篇    下一篇

多相催化CO2加氢直接合成大宗化学品与液体燃料

周紫璇a,b, 高鹏a,b,*()   

  1. a中国科学院上海高等研究院, 中科院低碳转化科学与工程重点实验室, 上海201210
    b中国科学院大学, 北京100049
  • 收稿日期:2022-03-07 接受日期:2022-04-07 出版日期:2022-08-18 发布日期:2022-06-20
  • 通讯作者: 高鹏
  • 基金资助:
    国家自然科学基金(21773286);国家自然科学基金(U1832162);国家自然科学基金(22172189);荷兰皇家壳牌集团前瞻科学基金(CW373032);中国科学院青年创新促进会(2018330);中国科学院洁净能源先导科技专项资助(XDA21090204);上海市青年科技启明星计划(19QA1409900);高潞空气化工产品(上海)能源科技有限公司

Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis

Zixuan Zhoua,b, Peng Gaoa,b,*()   

  1. aCAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
    bUniversity of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2022-03-07 Accepted:2022-04-07 Online:2022-08-18 Published:2022-06-20
  • Contact: Peng Gao
  • About author:Prof. Peng Gao (Chinese Academy of Sciences Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS)) received Ph.D. degree in chemical engineering and Technology from University of Chinese Academy of Sciences and Institute of Coal Chemistry, CAS in 2014. Since at the end of 2013, he has been working in SARI, CAS. He was honored with the Catalysis Rising Star Award from the Catalysis Society of China in 2021, Top Young Talents in Shanghai and Shanghai Rising-Star Award in 2019, and best reviewer award 2021 of Journal of Energy Chemistry. His research interests mainly focus on the conversion of carbon one molecular (CO2, CO and CH3OH, etc.) into chemicals and fuels via heterogeneous catalysis. He has published more than 60 peer-reviewed papers, which have been cited more than 3000 times (H index = 30), and was awarded as one of the top 1% of highly cited authors in Royal Society of Chemistry journals, 2019. More than 10 Chinese patents have been authorized respect to his work.
  • Supported by:
    National Natural Science Foundation of China(21773286);National Natural Science Foundation of China(U1832162);National Natural Science Foundation of China(22172189);“Frontier Science” Program of Shell Global Solutions International B.V.(CW373032);Youth Innovation Promotion Association CAS(2018330);“Transformational Technologies for Clean Energy and Demonstration”, Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21090204);Shanghai Rising-Star Program, China(19QA1409900);Gaolu Air Products and Chemicals (Shanghai) Energy Technology Co., Ltd

摘要:

借助可再生能源获取电能分解水制得的氢气, 将CO2转化为大宗化学品和液体燃料, 不仅能实现温室气体的减排, 而且有助于解决对化石燃料的过度依赖以及可再生能源的存储等问题. 目前, 实现CO2转化工业应用的最大障碍之一是缺乏高效稳定的催化剂. 此外, 将CO2分子转化为更高附加值的C2+(含有两个或两个以上碳原子的烃)产物比转化为简单的碳一分子产品更加困难.

本文系统介绍了本课题组开发的CO2加氢制甲醇、低碳烯烃、芳烃以及汽油与航空煤油馏分烃等高效多相催化剂的设计与合成思路, 通过理论计算与实验研究相结合, 深入探讨了这些催化剂的结构-性能关系、活性位点的性质和反应机制. 期望进一步推动CO2加氢制大宗化学品和液体燃料的多相催化剂的基础研究和工业应用. 对于CO2加氢制甲醇, 传统催化剂面临活性不高、逆水煤气变换反应使得选择性偏低、副产物水易导致纳米颗粒烧结失活等问题, 以高铜含量碱修饰水滑石材料为前驱体, 创制了纳米限域结构铜基催化剂, 在5000吨/年CO2制甲醇装置上完成了该催化剂的工业测试; 由于氧化铟(In2O3)催化剂具有更高的甲醇选择性, 近年来备受研究者广泛关注, 本课题组研究表明In2O3在CO2加氢反应中对晶相和暴露面的结构敏感性, 并创制了一种主要暴露(104)面的六方相材料, 当反应温度为360 °C时仍有利于甲醇合成.

基于反应耦合策略, 在多功能催化剂上可以将CO2加氢制甲醇与甲醇制烃类反应耦合, 或者将RWGS与费托合成以及烯烃异构/环化/芳构反应耦合, 由此可实现CO2加氢直接合成各种C2+产品. 多功能催化剂开发过程中也面临着与CO2加氢制甲醇反应类似的问题, 但反应网络更加复杂. 本文阐明了不同功能组分的结构与物化性质以及不同组分的耦合方式对催化剂上CO2加氢反应性能的影响规律与影响机制, 并揭示了不同耦合反应的中间物种的演化与反应机制. 另外, 对该领域未来重要的研究方向与各类催化剂的工业应用前景也进行了讨论, 以期为更高效催化剂的开发提供新的思路和策略, 并加深对CO2加氢反应网络的理解.

关键词: 二氧化碳加氢, 非均相催化, 耦合反应, 理性设计, 反应机理

Abstract:

The hydrogenation of carbon dioxide (CO2) to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention, and substantial advances have been made in this research field in recent years. In this study, we summarize our progress in the rational design and construction of highly efficient catalysts for CO2 hydrogenation to methanol, lower olefins, aromatics, and gasoline- and jet fuel-range hydrocarbons. The structure-performance relationship, nature of the active sites, and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence. The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO2 hydrogenation to produce bulk chemicals and liquid fuels.

Key words: Carbon dioxide hydrogenation, Heterogeneous catalysis, Coupling reaction, Rational design, Reaction mechanism