催化学报 ›› 2021, Vol. 42 ›› Issue (8): 1253-1268.DOI: 10.1016/S1872-2067(20)63681-6
收稿日期:
2020-08-11
接受日期:
2020-09-22
出版日期:
2021-08-18
发布日期:
2020-12-10
通讯作者:
曹睿
作者简介:
*, 电子信箱: ruicao@snnu.edu.cn基金资助:
Xue-Peng Zhang, Hong-Yan Wang, Haoquan Zheng, Wei Zhang, Rui Cao*()
Received:
2020-08-11
Accepted:
2020-09-22
Online:
2021-08-18
Published:
2020-12-10
Contact:
Rui Cao
About author:
*, E-mail: ruicao@snnu.edu.cnSupported by:
摘要:
随着化石燃料的不断消耗和生存环境的日益恶化, 可再生、清洁且环境友好的新能源逐渐受到广泛关注与利用. 太阳能作为一种洁净的可再生能源, 在自然界中, 植物可以通过光合作用将太阳能转换成化学能. 在该过程中, 水分子在光系统II中被氧化而释放出氧气, 伴随生成的质子和电子进一步将二氧化碳转化为蕴含生物质能的碳水化合物.
在光系统II中, 叶绿素P680被光照激发生成阳离子自由基P680 •+, 其具有很强的氧化能力, 可以从附近的析氧中心中夺取电子. 析氧中心通过这一过程失去4个电子, 可以将两分子水氧化生成一分子氧气和4个质子. 作为水裂解的半反应之一, 水氧化在热力学方面需要很多能量来断裂4个O-H键(ΔE = 1.23 V vs. NHE), 在动力学方面涉及4个氢原子与2个氧原子的重组以及氧气的释放, 因而水氧化析氧是一个非常缓慢的过程, 如何高效稳定地催化水氧化一直是人们研究的热点和难点. 研究发现, 自然界中存在的析氧中心为Mn4CaOx的钙锰簇合物, 在水氧化过程中生成的Mn=O物种可以被游离的水分子亲核进攻形成O-O键, 也可以与桥连μ-O(H)反应生成O-O键. 通过对析氧中心持续的研究, 在过去几十年中设计合成了一系列具有水氧化催化活性的基于金属配合物的分子催化剂.
分子催化剂催化水氧化一般主要分为金属-氧物种的演化过程以及O-O成键过程. 通常, 金属-氧物种可以通过失电子或质子耦合的失电子过程逐步生成高价态的金属-氧物种, 其引发的O-O成键过程通常是水氧化催化循环的决速步骤. 基于之前的研究成果, 目前主要报道了五种不同的O-O成键机理: (1)水亲核进攻金属-氧物种的WNA机理, (2)金属-氧自由基耦合的I2M机理, (3)金属-羟基自由基耦合的HC机理, (4)分子内进攻桥连氧的IOC机理以及(5)氧化还原异构的RI机理.
本文综述了过去几十年水氧化分子催化剂的发展, 总结了贵金属钌和铱配合物到第一过渡金属锰、铁、钴、镍和铜配合物催化水氧化过程中金属-氧物种的生成与演化, 重点阐述了引发O-O成键过程的高价态金属-氧物种的种类及其不同的O-O成键机理. 重点总结了O-O成键中WNA机理与I2M机理的异同, 并阐述了催化剂设计对WNA与I2M机理选择性的影响. 通过对金属-氧物种种类和O-O成键机理的总结, 将有助于进一步设计合成高效稳定的水氧化分子催化剂.
张学鹏, 王红艳, 郑浩铨, 张伟, 曹睿. 分子催化剂催化水氧化过程及其O-O成键机理[J]. 催化学报, 2021, 42(8): 1253-1268.
Xue-Peng Zhang, Hong-Yan Wang, Haoquan Zheng, Wei Zhang, Rui Cao. O-O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts[J]. Chinese Journal of Catalysis, 2021, 42(8): 1253-1268.
Scheme 1. Schematic diagrams of proposed O-O bond formation mechanisms: (a) water nucleophilic attack (WNA), (b) coupling between two metal oxo/oxyl units (I2M), (c) bimolecular hydroxyl coupling (BHC), (d) intramolecular hydroxyl coupling (IHC), (e) intramolecular coupling between hydroxyl and bridging oxo (intermolecular oxo/oxyl coupling; IOC), and (f) coupling between two bridging oxo units (redox isomerization; RI).
Scheme 2. Molecular structure of 1 blue dimer, where bpy denotes bipyridine, and proposed oxo-bridged binuclear Ru complex-mediated water nucleophilic attack O-O bond formation mechanism.
Scheme 7. Proposed catalytic cycle of mononuclear Ru-mediated water oxidation; the O-O bond formation mechanism follows the water nucleophilic attack (WNA) pathway.
Scheme 9. Molecular structures of 8 and 9. Proposed water nucleophilic attack (WNA) pathway of O-O bond formation, which involved the participation of an outer-sphere H2O molecule or the [CeIV(NO3)3(OH)] complex.
Scheme 12. Molecular structure of 15, and schematic diagram of two different water nucleophilic attack-type O-O bond formation transition states using a H2O cluster or an acetate anion as the external bases.
Scheme 14. Molecular structure of 17, and proposed water oxidation catalytic cycle via single electron transfer (SET)-water nucleophilic attack O-O bond formation.
Scheme 16. Molecular structures of 19 and 20, and proposed 19-mediated intramolecular coupling between two metal oxo/oxyl units (I2M)-type O-O bond formation mechanism.
Scheme 17. (a) Molecular structure of 21. (b) Isolated seven-coordinated Ru(IV) dimer complex with [H2O-HO-H-OH-H2O]- bridge. (c) Intramolecular coupling between two metal oxo/oxyl units (I2M) O-O bond formation mechanism between two seven-coordinated RuV=O (or RuIV-O?) intermediates.
Scheme 21. Molecular structures of 27 and 28, and proposed water nucleophilic attack (WNA) or coupling between two metal oxo/oxyl units (I2M) O-O bond formation mechanisms.
[1] |
J. Barber , Chem. Soc. Rev., 2009,38, 185-196.
DOI URL PMID |
[2] |
J. P. McEvoy, G. W. Brudvig , Chem. Rev., 2006,106, 4455-4483.
URL PMID |
[3] |
E. M. Sproviero, J. A. Gascón, J. P. McEvoy, G. W. Brudvig, V. S. Batista , Coord. Chem. Rev., 2008,252, 395-415.
DOI URL PMID |
[4] |
E. M. Sproviero, J. A. Gascón, J. P. McEvoy, G. W. Brudvig, V. S. Batista , J. Am. Chem. Soc., 2008,130, 3428-3442.
URL PMID |
[5] |
P. E. M. Siegbahn , Chem.-Eur. J., 2006,12, 9217-9227.
DOI URL PMID |
[6] |
P. E. M. Siegbahn , Biochim. Biophys. Acta, 2013,1827, 1003-1019.
DOI URL PMID |
[7] |
R. Z. Liao, P. E. M. Siegbahn , ChemSusChem, 2017,10, 4236-4263.
URL PMID |
[8] |
M. D. Kärkäs, O. Verho, E. V. Johnston, B. Åkermark , Chem. Rev., 2014,114, 11863-12001.
DOI URL PMID |
[9] |
B. M. Hunter, H. B. Gray, A. M. Müller , Chem. Rev., 2016,116, 14120-14136.
DOI URL PMID |
[10] | L. Huang, Y. Zou, D. Chen, S. Wang , Chin. J. Catal., 2019,40, 1822-1840. |
[11] | P. Li, W. Chen , Chin. J. Catal., 2019,40, 4-22. |
[12] |
J. J. Concepcion, J. W. Jurss, M. K. Brennaman, P. G. Hoertz, A. O. T. Patrocinio, N. Y. Murakami Iha, J. L. Templeton, T. J. Meyer , Acc. Chem. Res., 2009,42, 1954-1965.
URL PMID |
[13] | D. J. Wasylenko, R. D. Palmer, C. P. Berlinguette , Chem. Commun., 2013,49, 218-227. |
[14] |
X. Sala, S. Maji, R. Bofill, J. García-Antón, L. Escriche, A. Llobet , Acc. Chem. Res., 2014,47, 504-516.
DOI URL PMID |
[15] |
J. D. Blakemore, R. H. Crabtree, G. W. Brudvig , Chem. Rev., 2015,115, 12974-13005.
DOI URL PMID |
[16] |
L. Duan, L. Wang, F. Li, F. Li, L. Sun , Acc. Chem. Res., 2015,48, 2084-2096.
URL PMID |
[17] |
W. Zhang, W. Lai, R. Cao , Chem. Rev., 2017,117, 3717-3797.
DOI URL PMID |
[18] | T. Kikuchi, K. Tanaka , Eur. J. Inorg. Chem., 2014,2014, 607-618. |
[19] |
A. R. Parent, K. Sakai , ChemSusChem, 2014,7, 2070-2080.
DOI URL PMID |
[20] | H. Lei, X. Li, J. Meng, H. Zheng, W. Zhang, R. Cao , ACS Catal., 2019,9, 4320-4344. |
[21] | S. W. Gersten, G. J. Samuels, T. J. Meyer , J. Am. Chem. Soc., 1982,104, 4029-4030. |
[22] |
X. Yang, M.-H. Baik , J. Am. Chem. Soc., 2006,128, 7476-7485.
DOI URL PMID |
[23] |
J. L. Cape, J. K. Hurst , J. Am. Chem. Soc., 2008,130, 827-829.
DOI URL PMID |
[24] |
E. L. Lebeau, S. A. Adeyemi, T. J. Meyer , Inorg. Chem., 1998,37, 6476-6484.
URL PMID |
[25] |
R. Zong, R. P. Thummel , J. Am. Chem. Soc., 2005,127, 12802-12803.
DOI URL PMID |
[26] |
H.-W. Tseng, R. Zong, J. T. Muckerman, R. Thummel , Inorg. Chem., 2008,47, 11763-11773.
DOI URL PMID |
[27] |
N. Kaveevivitchai, L. Kohler, R. Zong, M. El Ojaimi, N. Mehta, R. P. Thummel , Inorg. Chem., 2013,52, 10615-10622.
URL PMID |
[28] |
J. J. Concepcion, J. W. Jurss, J. L. Templeton, T. J. Meyer , J. Am. Chem. Soc., 2008,130, 16462-16463.
DOI URL PMID |
[29] |
S. Masaoka, K. Sakai , Chem. Lett., 2009,38, 182-183.
DOI URL |
[30] |
D. J. Wasylenko, C. Ganesamoorthy, B. D. Koivisto, M. A. Henderson, C. P. Berlinguette , Inorg. Chem., 2010,49, 2202-2209.
DOI URL PMID |
[31] |
D. J. Wasylenko, C. Ganesamoorthy, M. A. Henderson, B. D. Koivisto, H. D. Osthoff, C. P. Berlinguette , J. Am. Chem. Soc., 2010,132, 16094-16106.
DOI URL PMID |
[32] |
J. J. Concepcion, J. W. Jurss, M. R. Norris, Z. Chen, J. L. Templeton, T. J. Meyer , Inorg. Chem., 2010,49, 1277-1279.
DOI URL PMID |
[33] | X. Sala, M. Z. Ertem, L. Vigara, T. K. Todorova, W. Chen, R. C. Rocha, F. Aquilante, C. J. Cramer, L. Gagliardi, A. Llobet , Angew. Chem. Int. Ed., 2010,49, 7745-7747. |
[34] | M. Yoshida, S. Masaoka, K. Sakai , Chem. Lett., 2009,38, 702-703. |
[35] |
B. Radaram, J. A. Ivie, W. Mangkheimayum Singh, R. M. Grudzien, J. H. Reibenspies, C. E. Webster, X. Zhao , Inorg. Chem., 2011,50, 10564-10571.
DOI URL PMID |
[36] | L. Bernet, R. Lalrempuia, W. Ghattas, H. Mueller-Bunz, L. Vigara, A. Llobet, M. Albrecht , Chem. Commun., 2011,47, 8058-8060. |
[37] |
M. D. Kärkäs, Y.-Y. Li, P. E. M. Siegbahn, R.-Z. Liao, B. Åkermark , Inorg. Chem., 2018,57, 10881-10895.
DOI URL PMID |
[38] | M. D. Kärkäs, T. Åkermark, E. V. Johnston, S. R. Karim, T. M. Laine, B.-L. Lee, T. Åkermark, T. Privalov, B. Åkermark , Angew. Chem. Int. Ed., 2012,51, 11589-11593. |
[39] | M. D. Kärkäs, T. Åkermark, H. Chen, J. Sun, B. Åkermark , Angew. Chem. Int. Ed., 2013,52, 4189-4193. |
[40] |
R. Matheu, M. Z. Ertem, J. Benet-Buchholz, E. Coronado, V. S. Batista, X. Sala, A. Llobet , J. Am. Chem. Soc., 2015,137, 10786-10795.
DOI URL PMID |
[41] | R. Matheu, M. Z. Ertem, M. Pipelier, J. Lebreton, D. Dubreuil, J. Benet-Buchholz, X. Sala, A. Tessier, A. Llobet , ACS Catal., 2018,8, 2039-2048. |
[42] | M. V. Sheridan, B. D. Sherman, S. L. Marquard, Z. Fang, D. L. Ashford, K.-R. Wee, A. S. Gold, L. Alibabaei, J. A. Rudd, M. K. Coggins, T. J. Meyer , J. Phys. Chem. C, 2015,119, 25420-25428. |
[43] | J. J. Concepcion, M.-K. Tsai, J. T. Muckerman, T. J. Meyer , J. Am. Chem. Soc., 2010,132, 1545-1557. |
[44] |
Z. Chen, J. J. Concepcion, X. Hu, W. Yang, P. G. Hoertz, T. J. Meyer , Proc. Natl. Acad. Sci. USA, 2010,107, 7225-7229.
DOI URL PMID |
[45] |
Z. Chen, J. J. Concepcion, H. Luo, J. F. Hull, A. Paul, T. J. Meyer , J. Am. Chem. Soc., 2010,132, 17670-17673.
DOI URL PMID |
[46] |
D. E. Polyansky, J. T. Muckerman, J. Rochford, R. Zong, R. P. Thummel, E. Fujita , J. Am. Chem. Soc., 2011,133, 14649-14665.
DOI URL PMID |
[47] |
L.-P. Wang, Q. Wu, T. Van Voorhis , Inorg. Chem., 2010,49, 4543-4553.
DOI URL PMID |
[48] | L. Vigara, M. Z. Ertem, N. Planas, F. Bozoglian, N. Leidel, H. Dau, M. Haumann, L. Gagliardi, C. J. Cramer, A. Llobet , Chem. Sci., 2012,3, 2576-2586. |
[49] | L. Tong, L. Duan, Y. Xu, T. Privalov, L. Sun , Angew. Chem. Int. Ed., 2011,50, 445-449. |
[50] |
L. Wang, L. Duan, B. Stewart, M. Pu, J. Liu, T. Privalov, L. Sun , J. Am. Chem. Soc., 2012,134, 18868-18880.
DOI URL PMID |
[51] |
T. Privalov, B. Åkermark, L. Sun , Chem.-Eur. J, 2011,17, 8313-8317.
DOI URL PMID |
[52] |
L. Tong, A. K. Inge, L. Duan, L. Wang, X. Zou, L. Sun , Inorg. Chem., 2013,52, 2505-2518.
DOI URL PMID |
[53] | A. Kimoto, K. Yamauchi, M. Yoshida, S. Masaoka, K. Sakai , Chem. Commun., 2012,48, 239-241. |
[54] |
M. Murakami, D. Hong, T. Suenobu, S. Yamaguchi, T. Ogura, S. Fukuzumi , J. Am. Chem. Soc., 2011,133, 11605-11613.
DOI URL PMID |
[55] | J. M. de Ruiter, R. L. Purchase, A. Monti, C. J. M. van der Ham, M. P. Gullo, K. S. Joya, M. D’Angelantonio, A. Barbieri, D. G. H. Hetterscheid, H. J. M. de Groot, F. Buda , ACS Catal., 2016,6, 7340-7349. |
[56] |
X. Lin, X. Hu, J. J. Concepcion, Z. Chen, S. Liu, T. J. Meyer, W. Yang , Proc. Natl. Acad. Sci. USA, 2012,109, 15669-15672.
DOI URL PMID |
[57] |
R. Kang, J. Yao, H. Chen , J. Chem. Theory Comput., 2013,9, 1872-1879.
DOI URL PMID |
[58] |
N. D. McDaniel, F. J. Coughlin, L. L. Tinker, S. Bernhard , J. Am. Chem. Soc., 2008,130, 210-217.
DOI URL PMID |
[59] |
L. Vilella, P. Vidossich, D. Balcells, A. Lledós , Dalton Trans., 2011,40, 11241-11247.
DOI URL PMID |
[60] |
J. F. Hull, D. Balcells, J. D. Blakemore, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree , J. Am. Chem. Soc., 2009,131, 8730-8731.
DOI URL PMID |
[61] |
J. D. Blakemore, N. D. Schley, D. Balcells, J. F. Hull, G. W. Olack, C. D. Incarvito, O. Eisenstein, G. W. Brudvig, R. H. Crabtree , J. Am. Chem. Soc., 2010,132, 16017-16029.
DOI URL PMID |
[62] | A. Bucci, G. Menendez Rodriguez, G. Bellachioma, C. Zuccaccia, A. Poater, L. Cavallo, A. Macchioni , ACS Catal., 2016,6, 4559-4563. |
[63] | R.-Z. Liao, P. E. M. Siegbahn , ACS Catal., 2014,4, 3937-3949. |
[64] | N. Wang, H. Zheng, W. Zhang, R. Cao , Chin. J. Catal., 2018,39, 228-244. |
[65] | M. W. Kanan, D. G. Nocera , Science, 2008,321, 1072-1075. |
[66] | A. Singh, L. Spiccia , Coord. Chem. Rev., 2013,257, 2607-2622. |
[67] | Y. Gao, J. Liu, M. Wang, Y. Na, B. Åkermark, L. Sun , Tetrahedron, 2007,63, 1987-1994. |
[68] |
T. Privalov, L. Sun, B. Åkermark, J. Liu, Y. Gao, M. Wang , Inorg. Chem., 2007,46, 7075-7086.
URL PMID |
[69] |
Y. Gao, T. Åkermark, J. Liu, L. Sun, B. Åkermark , J. Am. Chem. Soc., 2009,131, 8726-8727.
DOI URL PMID |
[70] |
R. Gupta, T. Taguchi, B. Lassalle-Kaiser, E. L. Bominaar, J. Yano, M. P. Hendrich, A. S. Borovik , Proc. Natl. Acad. Sci. USA, 2015,112, 5319-5324.
URL PMID |
[71] |
R. Z. Liao, M. D. Karkas, B.-L. Lee, B. Aakermark, P. E. M. Siegbahn, Inorg. Chem., 54, 342-351.
DOI URL PMID |
[72] | R.-Z. Liao, P. E. M. Siegbahn , J. Catal., 2017,354, 169-181. |
[73] |
W. C. Ellis, N. D. McDaniel, S. Bernhard, T. J. Collins , J. Am. Chem. Soc., 2010,132, 10990-10991.
URL PMID |
[74] |
J. L. Fillol, Z. Codolà, I. Garcia-Bosch, L. Gómez, J. J. Pla, M. Costas , Nat. Chem., 2011,3, 807-813.
DOI URL PMID |
[75] |
Z. Codolà, L. Gómez, S. T. Kleespies, L. Que Jr, M. Costas, J. Lloret-Fillol , Nat. Commun., 2015,6, 5865.
DOI URL PMID |
[76] | W. A. Hoffert, M. T. Mock, A. M. Appel, J. Y. Yang , Eur. J. Inorg. Chem., 2013,2013, 3846-3857. |
[77] |
D. Hong, S. Mandal, Y. Yamada, Y.-M. Lee, W. Nam, A. Llobet, S. Fukuzumi , Inorg. Chem., 2013,52, 9522-9531.
DOI URL PMID |
[78] | G. Panchbhai, W. M. Singh, B. Das, R. T. Jane, A. Thapper , Eur. J. Inorg. Chem., 2016,2016, 3262-3268. |
[79] | B. Yang, Q.-Q. Yang, X. Jiang, B. Chen, C.-H. Tung, L.-Z. Wu , Chem. Commun., 2017,53, 9063-9066. |
[80] |
M. K. Coggins, M.-T. Zhang, A. K. Vannucci, C. J. Dares, T. J. Meyer , J. Am. Chem. Soc., 2014,136, 5531-5534.
DOI URL PMID |
[81] |
C. Panda, J. Debgupta, D. Díaz Díaz, K. K. Singh, S. Sen Gupta, B. B. Dhar , J. Am. Chem. Soc., 2014,136, 12273-12282.
DOI URL PMID |
[82] |
M. Z. Ertem, L. Gagliardi, C. J. Cramer , Chem. Sci., 2012,3, 1293-1299.
DOI URL |
[83] |
R.-Z. Liao, X.-C. Li, P. E. M. Siegbahn , Eur. J. Inorg. Chem., 2014,2014, 728-741.
DOI URL |
[84] |
W.-P. To, T. Wai-Shan Chow, C.-W. Tse, X. Guan, J.-S. Huang, C.-M. Che , Chem. Sci., 2015,6, 5891-5903.
DOI URL PMID |
[85] |
Y.-Y. Li, L.-P. Tong, R.-Z. Liao , Inorg. Chem., 2018,57, 4590-4601.
DOI URL PMID |
[86] |
D. K. Dogutan, R. McGuire, D. G. Nocera , J. Am. Chem. Soc., 2011,133, 9178-9180.
DOI URL PMID |
[87] |
M. Z. Ertem, C. J. Cramer , Dalton Trans., 2012,41, 12213-12219.
DOI URL PMID |
[88] |
W. Lai, R. Cao, G. Dong, S. Shaik, J. Yao, H. Chen , J. Phys. Chem. Lett., 2012,3, 2315-2319.
URL PMID |
[89] | H. Sun, Y. Han, H. Lei, M. Chen, R. Cao , Chem. Commun., 2017,53, 6195-6198. |
[90] |
H. Lei, A. Han, F. Li, M. Zhang, Y. Han, P. Du, W. Lai, R. Cao , Phys. Chem. Chem. Phys., 2014,16, 1883-1893.
DOI URL PMID |
[91] | H. Lei, C. Liu, Z. Wang, Z. Zhang, M. Zhang, X. Chang, W. Zhang, R. Cao , ACS Catal., 2016,6, 6429-6437. |
[92] | X. Li, H. Lei, J. Liu, X. Zhao, S. Ding, Z. Zhang, X. Tao, W. Zhang, W. Wang, X. Zheng, R. Cao , Angew. Chem., Int. Ed., 2018,57, 15070-15075. |
[93] |
H. Li, X. Li, H. Lei, G. Zhou, W. Zhang, R. Cao , ChemSusChem, 2019,12, 801-806.
URL PMID |
[94] | L. Xie, X. Li, B. Wang, J. Meng, H. Lei, W. Zhang, R. Cao , Angew. Chem. Int. Ed., 2019,58, 18883-18887. |
[95] |
L. Xu, H. Lei, Z. Zhang, Z. Yao, J. Li, Z. Yu, R. Cao , Phys. Chem. Chem. Phys., 2017,19, 9755-9761.
DOI URL PMID |
[96] | D. Wang, J. T. Groves , Proc. Natl. Acad. Sci. USA, 2013,110, 15579-15584. |
[97] |
Y. Han, Y. Wu, W. Lai, R. Cao , Inorg. Chem., 2015,54, 5604-5613.
DOI URL PMID |
[98] | L. Wang, L. Duan, R. B. Ambre, Q. Daniel, H. Chen, J. Sun, B. Das, A. Thapper, J. Uhlig, P. Dinér, L. Sun , J. Catal., 2016,335, 72-78. |
[99] |
S. M. Barnett, K. I. Goldberg, J. M. Mayer , Nat. Chem., 2012,4, 498-502.
URL PMID |
[100] |
T. Zhang, C. Wang, S. Liu, J.-L. Wang, W. Lin , J. Am. Chem. Soc., 2014,136, 273-281.
DOI URL PMID |
[101] |
M.-T. Zhang, Z. Chen, P. Kang, T. J. Meyer , J. Am. Chem. Soc., 2013,135, 2048-2051.
DOI URL PMID |
[102] | J. S. Pap, Ł. Szyrwiel, D. Srankó, Z. Kerner, B. Setner, Z. Szewczuk, W. Malinka , Chem. Commun., 2015,51, 6322-6324. |
[103] | M. K. Coggins, M. T. Zhang, Z. Chen, N. Song, T. J. Meyer , Angew. Chem. Int. Ed., 2014,53, 12226-12230. |
[104] | F. Chen, N. Wang, H. Lei, D. Guo, H. Liu, Z. Zhang, W. Zhang, W. Lai, R. Cao , Inorg. Chem., 2017,56, 13368-13375. |
[105] |
P. Garrido-Barros, I. Funes-Ardoiz, S. Drouet, J. Benet-Buchholz, F. Maseras, A. Llobet , J. Am. Chem. Soc., 2015,137, 6758-6761.
DOI URL PMID |
[106] |
C. Sens, I. Romero, M. Rodríguez, A. Llobet, T. Parella, J. Benet-Buchholz , J. Am. Chem. Soc., 2004,126, 7798-7799.
DOI URL PMID |
[107] |
X. Yang, M.-H. Baik , J. Am. Chem. Soc., 2008,130, 16231-16240.
DOI URL PMID |
[108] | S. Maji, L. Vigara, F. Cottone, F. Bozoglian, J. Benet-Buchholz, A. Llobet , Angew. Chem. Int. Ed., 2012,51, 5967-5970. |
[109] | T. Wada, K. Tsuge, K. Tanaka , Angew. Chem. Int. Ed., 2000,39, 1479-1482. |
[110] |
T. Wada, K. Tsuge, K. Tanaka , Inorg. Chem., 2001,40, 329-337.
DOI URL PMID |
[111] |
J. T. Muckerman, D. E. Polyansky, T. Wada, K. Tanaka, E. Fujita , Inorg. Chem., 2008,47, 1787-1802.
DOI URL PMID |
[112] |
S. Ghosh, M.-H. Baik , Inorg. Chem., 2011,50, 5946-5957.
URL PMID |
[113] | S. Ghosh, M. H. Baik , Angew. Chem. Int. Ed., 2012,51, 1221-1224. |
[114] |
K. Tanaka, H. Isobe, S. Yamanaka, K. Yamaguchi , Proc. Natl. Acad. Sci. USA, 2012,109, 15600-15605.
DOI URL PMID |
[115] |
T. A. Betley, Q. Wu, T. Van Voorhis, D. G. Nocera , Inorg. Chem., 2008,47, 1849-1861.
URL PMID |
[116] | D. J. Wasylenko, C. Ganesamoorthy, B. D. Koivisto, C. P. Berlinguette , Eur. J. Inorg. Chem., 2010,2010, 3135-3142. |
[117] |
L. Duan, A. Fischer, Y. Xu, L. Sun , J. Am. Chem. Soc., 2009,131, 10397-10399.
DOI URL PMID |
[118] |
S. Romain, L. Vigara, A. Llobet , Acc. Chem. Res., 2009,42, 1944-1953.
DOI URL PMID |
[119] | L. Duan, Y. Xu, M. Gorlov, L. Tong, S. Andersson, L. Sun , Chem.- Eur. J, 2010,16, 4659-4668. |
[120] |
L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun , Nat. Chem., 2012,4, 418-423.
DOI URL PMID |
[121] |
Y. Xie, D. W. Shaffer, J. J. Concepcion , Inorg. Chem., 2018,57, 10533-10542.
DOI URL PMID |
[122] | T. Fan, S. Zhan, M. S. G. Ahlquist , ACS Catal., 2016,6, 8308-8312. |
[123] |
L. Duan, C. M. Araujo, M. S. G. Ahlquist, L. Sun , Proc. Natl. Acad. Sci. USA, 2012,109, 15584-15588.
DOI URL PMID |
[124] | Y. Jiang, F. Li, B. Zhang, X. Li, X. Wang, F. Huang, L. Sun , Angew. Chem. Int. Ed., 2013,52, 3398-3401. |
[125] |
M. Okamura, M. Kondo, R. Kuga, Y. Kurashige, T. Yanai, S. Hayami, V. K. K. Praneeth, M. Yoshida, K. Yoneda, S. Kawata, S. Masaoka , Nature, 2016,530, 465-468.
DOI URL PMID |
[126] | R.-Z. Liao, S. Masaoka, P. E. M. Siegbahn , ACS Catal., 2018,8, 11671-11678. |
[127] |
S. Neudeck, S. Maji, I. López, S. Meyer, F. Meyer, A. Llobet , J. Am. Chem. Soc., 2014,136, 24-27.
DOI URL PMID |
[128] |
Z. Deng, H.-W. Tseng, R. Zong, D. Wang, R. Thummel , Inorg. Chem., 2008,47, 1835-1848.
DOI URL PMID |
[129] | J. Odrobina, J. Scholz, A. Pannwitz, L. Francàs, S. Dechert, A. Llobet, C. Jooss, F. Meyer , ACS Catal., 2017,7, 2116-2125. |
[130] | J. Odrobina, J. Scholz, M. Risch, S. Dechert, C. Jooss, F. Meyer , ACS Catal., 2017,7, 6235-6244. |
[131] | T. Nakazono, A. R. Parent, K. Sakai , Chem. Commun., 2013,49, 6325-6327. |
[132] |
T. Nakazono, A. R. Parent, K. Sakai , Chem.-Eur. J, 2015,21, 6723-6726.
DOI URL PMID |
[133] |
H. A. Younus, N. Ahmad, A. H. Chughtai, M. Vandichel, M. Busch, K. Van Hecke, M. Yusubov, S. Song, F. Verpoort , ChemSusChem, 2017,10, 862-875.
DOI URL PMID |
[134] |
Y. Zhao, J. Lin, Y. Liu, B. Ma, Y. Ding, M. Chen , Chem. Commun., 2015,51, 17309-17312.
DOI URL |
[135] | B. Das, A. Orthaber, S. Ott, A. Thapper , Chem. Commun., 2015,51, 13074-13077. |
[136] | D. J. Wasylenko, C. Ganesamoorthy, J. Borau-Garcia, C. P. Berlinguette , Chem. Commun., 2011,47, 4249-4251. |
[137] |
S. W. Kohl, L. Weiner, L. Schwartsburd, L. Konstantinovski, L. J. Shimon, Y. Ben-David, M. A. Iron, D. Milstein , Science, 2009,324, 74-77.
DOI URL PMID |
[138] |
X. Yang, M. B. Hall , J. Am. Chem. Soc., 2010,132, 120-130.
DOI URL PMID |
[139] |
Y. Chen, W.-H. Fang , J. Phys. Chem. A, 2010,114, 10334-10338.
DOI URL PMID |
[140] | T. P. Brewster, J. D. Blakemore, N. D. Schley, C. D. Incarvito, N. Hazari, G. W. Brudvig, R. H. Crabtree , Organometallics, 2011,30, 965-973. |
[141] | D. G. H. Hetterscheid, J. N. H. Reek , Chem. Commun., 2011,47, 2712-2714. |
[142] |
J. Graeupner, U. Hintermair, D. L. Huang, J. M. Thomsen, M. Takase, J. Campos, S. M. Hashmi, M. Elimelech, G. W. Brudvig, R. H. Crabtree , Organometallics, 2013,32, 5384-5390.
DOI URL PMID |
[143] | M. Zhang, M. T. Zhang, C. Hou, Z. F. Ke, T. B. Lu , Angew. Chem. Int. Ed., 2014,53, 13042-13048. |
[144] |
G. Y. Luo, H. H. Huang, J. W. Wang, T. B. Lu , ChemSusChem, 2016,9, 485-491.
DOI URL PMID |
[145] | J. W. Wang, X. Q. Zhang, H. H. Huang, T. B. Lu , ChemCatChem, 2016,8, 3287-3293. |
[146] |
Y. Liu, Y. Han, Z. Zhang, W. Zhang, W. Lai, Y. Wang, R. Cao , Chem. Sci., 2019,10, 2613-2622.
DOI URL PMID |
[147] | W.-T. Lee, S. B. Muñoz III, D. A. Dickie, J. M. Smith , Angew. Chem. Int. Ed., 2014,53, 9856-9859. |
[148] | D. W. Crandell, S. Xu, J. M. Smith, M.-H. Baik , Inorg. Chem., 2017,56, 4435-4445. |
[149] |
Y. Y. Li, K. Ye, P. E. Siegbahn, R. Z. Liao , ChemSusChem, 2017,10, 903-911.
URL PMID |
[150] | X. J. Su, M. Gao, L. Jiao, R. Z. Liao, P. E. Siegbahn, J. P. Cheng, M. T. Zhang , Angew. Chem. Int. Ed., 2015,54, 4909-4914. |
[151] |
Y. Pushkar, Y. Pineda-Galvan, A. K. Ravari, T. Otroshchenko, D. A. Hartzler , J. Am. Chem. Soc., 2018,140, 13538-13541.
DOI URL PMID |
[152] |
J. A. Halfen, S. Mahapatra, E. C. Wilkinson, S. Kaderli, V. G. Young, L. Que, A. D. Zuberbühler, W. B. Tolman , Science, 1996,271, 1397-1400.
URL PMID |
[153] |
S. J. Koepke, K. M. Light, P. E. VanNatta, K. M. Wiley, M. T. Kieber-Emmons , J. Am. Chem. Soc., 2017,139, 8586-8600.
DOI URL PMID |
[1] | 郭凯, 雷海涛, 李夏亮, 张宗尧, 王亚博, 郭鸿波, 张伟, 曹睿. 碱金属阳离子对铁卟啉电催化CO2还原的影响[J]. 催化学报, 2021, 42(9): 1439-1444. |
[2] | 陈齐发, 杜昊易, 章名田. 缓冲溶液阴离子对三价铜催化剂催化水氧化过程的影响[J]. 催化学报, 2021, 42(8): 1338-1344. |
[3] | 黄远, 王建军, 邹杨, 蒋立文, 刘晓龙, 江文杰, 刘宏, 胡劲松. 选择性硒掺杂提高NiFe2O4/NiOOH异质结电催化析氧性能[J]. 催化学报, 2021, 42(8): 1395-1403. |
[4] | Shunichi Fukuzumi, Yong-Min Lee, Wonwoo Nam. 过氧化氢生产与利用的新进展[J]. 催化学报, 2021, 42(8): 1241-1252. |
[5] | RajenderBoddula, 谢关才, 郭北斗, 宫建茹. 过渡金属电催化剂在硅基光阳极分解水产氧中的作用[J]. 催化学报, 2021, 42(8): 1387-1394. |
[6] | 邵方君, 姚子豪, 高怡静, 周强, 包志康, 庄桂林, 钟兴, 伍川, 魏中哲, 王建国. 双功能催化剂Ru2P在N-杂环加氢和无受体脱氢反应中的几何效应和电子效应[J]. 催化学报, 2021, 42(7): 1185-1194. |
[7] | 张默, 李慧杰, 张峻豪, 吕红金, 杨国昱. 基于多金属氧酸盐催化剂的光驱动产氢研究进展[J]. 催化学报, 2021, 42(6): 855-871. |
[8] | Jafar Hussain Shah, Anum Shahid Malik, Ahmed Mahmoud Idris, Saadia Rasheed, 韩洪宪, 李灿. Mn掺杂的铁电半导体BiFeO3本征光催化氧化水活性的研究[J]. 催化学报, 2021, 42(6): 945-952. |
[9] | 吴楚楚, 张晓明, 李焕巧, 夏章讯, 于陕升, 王素力, 孙公权. 具有高效析氧催化性能的铁基双元金属有机框架纳米棒研究[J]. 催化学报, 2021, 42(4): 637-647. |
[10] | 卓启明, 詹绍琦, 段乐乐, 刘畅, 吴秀娟, Mårten S.G. Ahlquist, 李福胜, 孙立成. 电极表面第二配位环境对水氧化分子催化剂O-O键形成机理的调控[J]. 催化学报, 2021, 42(3): 460-469. |
[11] | 王嘉, 尤瑞, 千坤, 潘洋, 杨玖重, 黄伟新. Cl-改性对Ag/Al2O3催化剂结构及其催化C3H6-SCR和H2/C3H6-SCR反应性能的影响[J]. 催化学报, 2021, 42(12): 2242-2253. |
[12] | 陈迎冬, 杨树姣, 刘红飞, 张伟, 曹睿. 具有结构诱导的亲水性和导电性的α-MnO2纳米线网络用于电催化[J]. 催化学报, 2021, 42(10): 1724-1731. |
[13] | 何烨, 李解元, 李康璐, 孙明禄, 袁潮苇, 陈瑞敏, 盛剑平, 冷庚, 董帆. Bi量子点修饰的C掺杂二维BiOCl纳米片:增强的可见光光催化活性和反应路径[J]. 催化学报, 2020, 41(9): 1430-1438. |
[14] | 陈瑞敏, 王红, 武慧中, 盛建平, 李解元, 崔雯, 董帆. SrTiO3/BiOI异质结构:界面电荷分离、增强光催化活性和反应机理[J]. 催化学报, 2020, 41(4): 710-718. |
[15] | 孙万军, 孟翔宇, 徐春江, 杨峻懿, 梁向明, 董银娟, 董聪朝, 丁勇. 无定形CoOx耦合碳点构筑海绵状多孔结构的双功能光催化剂用于提高水氧化和二氧化碳还原性能[J]. 催化学报, 2020, 41(12): 1826-1836. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||