催化学报 ›› 2022, Vol. 43 ›› Issue (5): 1247-1257.DOI: 10.1016/S1872-2067(21)63973-6
Karen Cristina Bedina,b, Beatriz Mouriñoa, Ingrid Rodríguez-Gutiérreza,b, João Batista Souza Juniora, Gabriel Trindade dos Santosa,c, Jefferson Bettinia, Carlos Alberto Rodrigues Costaa, Lionel Vayssieresd(), Flavio Leandro Souzaa,b(
)
收稿日期:
2021-10-01
接受日期:
2021-11-11
出版日期:
2022-05-18
发布日期:
2022-03-23
通讯作者:
Lionel Vayssieres,Flavio Leandro Souza
基金资助:
Karen Cristina Bedina,b, Beatriz Mouriñoa, Ingrid Rodríguez-Gutiérreza,b, João Batista Souza Juniora, Gabriel Trindade dos Santosa,c, Jefferson Bettinia, Carlos Alberto Rodrigues Costaa, Lionel Vayssieresd(), Flavio Leandro Souzaa,b(
)
Received:
2021-10-01
Accepted:
2021-11-11
Online:
2022-05-18
Published:
2022-03-23
Contact:
Lionel Vayssieres, Flavio Leandro Souza
Supported by:
摘要:
本文采用一种简单、有效的规模化溶液化学策略, 在基底(如商用氟掺杂氧化锡透明导电涂层玻璃(FTO))和光活性薄膜(如赤铁矿)之间形成丰富的背接触界面, 并用于低成本水氧化反应. 高分辨率电子显微镜(扫描电镜、透射电镜、扫描透射电镜)、原子力显微镜、元素成像(电子能量损失谱和能量色散谱)和光电化学研究表明, 可通过前驱体溶液的化学成分工程来有效降低机械应力、晶格失配、电子势垒和FTO与赤铁矿在背面接触界面之间的空隙以及FTO与电解液之间的短路和有害反应, 进而提升这些低成本光阳极对水氧化反应以及PEC水分解清洁、可持续地生产氢气的整体效率. 本研究对通过最小化在介孔电极的背接触界面和晶粒边界上的电子-空穴复合, 进而提高电荷收集效率具有重要意义, 可提高低成本PEC水裂解装置的整体效率和规模化的能力.
Karen Cristina Bedin, Beatriz Mouriño, Ingrid Rodríguez-Gutiérrez, João Batista Souza Junior, Gabriel Trindade dos Santos, Jefferson Bettini, Carlos Alberto Rodrigues Costa, Lionel Vayssieres, Flavio Leandro Souza. 基于溶液化学策略构建背接触FTO/赤铁矿光阳极界面工程的高效光催化水氧化研究[J]. 催化学报, 2022, 43(5): 1247-1257.
Karen Cristina Bedin, Beatriz Mouriño, Ingrid Rodríguez-Gutiérrez, João Batista Souza Junior, Gabriel Trindade dos Santos, Jefferson Bettini, Carlos Alberto Rodrigues Costa, Lionel Vayssieres, Flavio Leandro Souza. Solution chemistry back-contact FTO/hematite interface engineering for efficient photocatalytic water oxidation[J]. Chinese Journal of Catalysis, 2022, 43(5): 1247-1257.
Fig. 1. Schematic representation of the polymeric precursor solution preparation and thin films fabrication process for pristine and Zr-modified hematite photoelectrodes.
Fig. 2. STEM images of hematite single solvent (a) and mixing solvent (b) and Zr4+ addition layers. Bottom: Magnified regions represented by red squares highlighting the contrast of poor and rich contact between photocatalyst thin film and commercial FTO glass substrate.
Fig. 3. Schematic representation of the different molecular configurations leading to better contact interface between FTO and photocatalyst during thermal treatment. More suitable molecular packing along with the Zr4+ segregation at hematite surface is providing an appropriate environment for the growth of a back-contact-rich interface.
Fig. 4. TEM images of pristine hematite/FTO interface showing (a) low magnification image and HRTEM images at two different magnifications for (b) the tip of FTO/hematite interface (white box in image a) and (c) filtered HRTEM of lateral FTO (SnO2)/hematite interface (white box in image (d); (e,f) Fast Fourier Transform (FFT) images of hematite and FTO (SnO2) regions in image c indexed with the crystallographic planes in green and red dots along with the zone axis in the right side bottom corner of the images. TEM images of FTO/ZrH3% interface (hematite containing Zr) showing (f) low magnification image and HRTEM images with two magnifications for (g) the lateral interface and (h) filtered HRTEM of lateral FTO/ZrH3% interface (white box in image h), (i,j) FFT images of hematite (α-Fe2O3) and FTO (SnO2) regions in image h.
Fig. 5. (a) Linear sweep voltammograms of pristine hematite, ZrH1%, ZrH2%, ZrH3% and ZrH4% measured in 1.0 mol/L NaOH at scan rate of 10 mV s-1. The solid lines represent the response under AM 1.5G illumination (100 mW cm-2) and the dashed lines under dark conditions, and (b) Overall efficiency (ƞoverall) obtained for the ratio Jph/Jabs for all the prepared thin films, (c) Photocurrent densities extracted at 1.23 V (RHE) from literature using the same chemical procedure method and similar planar thin film morphology showing a Si4+-doped (black line, ) [17], Cu2+-doped (blue line, ) [31], pristine Hematite multiple layers (green line, ) [27], Sn4+-doped/FeNi (orange line, ) [28], and the ZrH3%/FeNi (present work, red line, ). The reported photocurrent densities were measured in 1.0 mol/L NaOH aqueous solution at pH = 13.6.
Fig. 6. (a) EIS spectra for pristine-H (black line, ) and ZrH3%/FeNi (red line, ) measured at 1.23 V vs. RHE under illuminated conditions; the dashed lines represent the fitting curves obtained from the equivalent circuit inserted in a). (b) Mott-Schottky plots recorded at 1 kHz in dark condition for Pristine-H and ZrH3%/FeNi. Solid lines represent the linear fit to the selected experimental data. The experiment was measured in 1.0 mol/L NaOH solution at pH = 13.6.
photoanode | Rs (W) | Rbulk (W) | Cbulk (F) | Rss (W) | CPEss (F) |
---|---|---|---|---|---|
H | 20.04 | 540 | 1.86E-05 | 361.9 | 2.73E-05 |
ZrH3%/FeNi | 14.01 | 197.1 | 2.11E-05 | 21.51 | 1.52E-05 |
Table 1 Fitting parameters derived from the photoelectrochemical Impedance Spectroscopy of H and ZrH3%/FeNi photoanodes at 1.23 V (V vs. RHE).
photoanode | Rs (W) | Rbulk (W) | Cbulk (F) | Rss (W) | CPEss (F) |
---|---|---|---|---|---|
H | 20.04 | 540 | 1.86E-05 | 361.9 | 2.73E-05 |
ZrH3%/FeNi | 14.01 | 197.1 | 2.11E-05 | 21.51 | 1.52E-05 |
Fig. 8. STEM image and chemical mapping images obtained from EDS for the ZrH3%/FeNi thin film. The area marked with a yellow box was used to drift correction and the green box is the mapping region.
Fig. 9. STEM image and STEM/EELS energy shift mapping (ΔeV) for L3-edge of Fe in the rectangular green box. Variations of oxidation state and chemical environment of iron are displayed by the ΔeV color map where differences from the brown color (ΔeV equal 0) represents differences from the standard L3-edge peak position for iron in hematite. The square yellow box was used for drift correction in the STEM/EELS mapping.
Fig. 10. Linear sweep voltammograms of pristine-H, ZrH3% and ZrH3%/FeNi measured in 1.0 mol/L NaOH + 5% H2O2 for ZrH3%/FeNi at scan rate of 10 mV s-1. The solid lines represent the response under AM 1.5G illumination (100 mW cm-2) and the dashed lines under dark conditions.
Fig. 11. (a) Cyclic voltammetry of ZrH3%/FeNi photoanode up to 200 scans from 0.6 to 1.8 V vs. RHE under simulated light conditions (forward scan and 50 mV/s scan rate and light intensity calibrated at 100 mW; (b) Chronoamperometry curve of ZrH3%/FeNi at 1.23 V vs. RHE.
[1] |
J. Li, H. Chen, C. A. Triana, G. R. Patzke, Angew. Chem. Int. Ed., 2021, 60, 18380-18396.
DOI URL |
[2] |
B. Iandolo, B. Wickman, I. Zorić, A. Hellman, J. Mater. Chem. A, 2015, 3, 16896-16912.
DOI URL |
[3] |
K. Sivula, J. Phys. Chem. Lett., 2013, 4, 1624-1633.
DOI PMID |
[4] |
J. Zhang, J. Cui, S. Eslava, Adv. Energy Mater., 2021, 11, 2003111.
DOI URL |
[5] |
D. Zhou, K. Fan, Chin. J. Catal., 2021, 42, 904-919.
DOI URL |
[6] |
Z. Wang, L. Wang, Chin. J. Catal., 2018, 39, 369-378.
DOI URL |
[7] | F. Li, J. Jian, Y. Xu, S. Wang, H. Wang, H. Wang, Eng. Reports, 2021, 3, e12387. |
[8] |
L. Vayssieres, N. Beermann, S. E. Lindquist, A. Hagfeldt, Chem. Mater., 2001, 13, 233-235.
DOI URL |
[9] |
L. Vayssieres, M. Graetzel, Angew. Chem. Int. Ed., 2004, 43, 3666-3670.
DOI URL |
[10] |
R. H. Gonçalves, B. H. R. Lima, E. R. Leite, J. Am. Chem. Soc., 2011, 133, 6012-6019.
DOI PMID |
[11] |
T. Katsuki, Z. N. Zahran, K. Tanaka, T. Eo, E. A. Mohamed, Y. Tsubonouchi, M. R. Berber, M. Yagi, ACS Appl. Mater. Interfaces, 2021, 13, 39282-39290.
DOI URL |
[12] | A. E. Danks, S. R. Hall, Z. Schnepp, Mater. Horizons, 2016, 3, 91-112. |
[13] |
J. Kang, Y. R. Gwon, S. K. Cho, J. Electroanal. Chem., 2020, 878, 114601.
DOI URL |
[14] | M. Kakihana, K. Domen, MRS Bull., 2000, 25(9), 27-31. |
[15] |
M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, L. Börjesson, J. Appl. Phys., 1992, 71, 3904-3910.
DOI URL |
[16] |
F. L. Souza, K. P. Lopes, E. Longo, E. R. Leite, Phys. Chem. Chem. Phys., 2009, 11, 1215-1219.
DOI URL |
[17] |
F. L. Souza, K. P. Lopes, P. A. P. Nascente, E. R. Leite, Sol. Energy Mater. Sol. Cells, 2009, 93, 362-368.
DOI URL |
[18] |
M. H. Tang, P. Chakthranont, T. F. Jaramillo, RSC Adv., 2017, 7, 28350-28357.
DOI URL |
[19] |
J. E. N. Swallow, B. A. D. Williamson, T. J. Whittles, M. Birkett, T. J. Featherstone, N. Peng, A. Abbott, M. Farnworth, K. J. Cheetham, P. Warren, D. O. Scanlon, V. R. Dhanak, T. D. Veal, Adv. Funct. Mater., 2018, 28, 1701900.
DOI URL |
[20] |
J. K. Yang, B. Liang, M. J. Zhao, Y. Gao, F. C. Zhang, H. L. Zhao, Sci. Rep., 2015, 5, 15001.
DOI PMID |
[21] |
L. Steier, I. Herraiz-Cardona, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, S. D. Tilley, M. Grätzel, Adv. Funct. Mater., 2014, 24, 7681-7688.
DOI URL |
[22] |
Z. Zhou, L. Li, Y. Niu, H. Song, X.-S. Xing, Z. Guo, S. Wu, Dalton Trans., 2021, 50, 2936-2944.
DOI URL |
[23] |
O. Zandi, B. M. Klahr, T. W. Hamann, Energy Environ. Sci., 2013, 6, 634-642.
DOI URL |
[24] |
M. R. Nellist, F. A. L. Laskowski, J. Qiu, H. Hajibabaei, K. Sivula, T. W. Hamann, S. W. Boettcher, Nat. Energy, 2018, 3, 46-52.
DOI URL |
[25] |
P. Shadabipour, T. W. Hamann, Chem. Commun., 2020, 56, 2570-2573.
DOI URL |
[26] |
D. A. Bellido-Aguilar, A. Tofanello, F. L. Souza, L. N. Furini, C. J. L. Constantino, Thin Solid Films, 2016, 604, 28-39.
DOI URL |
[27] |
D. N. F. Muche, T. M. G. dos Santos, G. P. Leite, M. A. Melo, R. V. Gonçalves, F. L. Souza, Mater. Lett., 2019, 254, 218-221.
DOI URL |
[28] |
D. N. F. Muche, S. A. Carminati, A. F. Nogueira, F. L. Souza, Sol. Energy Mater. Sol. Cells, 2020, 208, 110377.
DOI URL |
[29] |
K. Sivula, ACS Energy Lett., 2021, 6, 2549-2551.
DOI URL |
[30] |
J. Y. Kim, G. Magesh, D. H. Youn, J.-W. Jang, J. Kubota, K. Domen, J. S. Lee, Sci. Rep., 2013, 3, 2681.
DOI URL |
[31] |
Y. Li, N. Guijarro, X. Zhang, M. S. Prevot, X. A. Jeanbourquin, K. Sivula, H. Chen, Y. Li, ACS Appl. Mater. Interfaces, 2015, 7, 16999-17007.
DOI URL |
[32] |
Z. Zhang, I. Karimata, H. Nagashima, S. Muto, K. Ohara, K. Sugimoto, T. Tachikawa, Nat. Commun., 2019, 10, 4832.
DOI URL |
[33] |
H. Zhang, D. Li, W. J. Byun, X. Wang, T. J. Shin, H. Y. Jeong, H. Han, C. Li, J. S. Lee, Nat. Commun., 2020, 11, 4622.
DOI URL |
[34] |
F. A. L. Laskowski, M. R. Nellist, J. Qiu, S. W. Boettcher, J. Am. Chem. Soc., 2019, 141, 1394-1405.
DOI PMID |
[35] |
L. Xi, S. Y. Chiam, W. F. Mak, P. D. Tran, J. Barber, S. C. J. Loo, L. H. Wong. Chem. Sci., 2013, 4, 164-169.
DOI URL |
[36] |
J. Wang, N. H. Perry, L. Guo, L. Vayssieres, H. L. Tuller, ACS Appl. Mater. Interfaces., 2019, 11, 2031-2041.
DOI URL |
[37] |
M. R. S. Soares, C. A. R. Costa, E. M. Lanzoni, J. Bettini, C. A. O. Ramirez, F. L. Souza, E. Longo, E. R. Leite, Adv. Electron. Mater., 2019, 5, 1900065.
DOI URL |
[38] |
C. X. Kronawitter, I. Zegkinoglou, S. H. Shen, P. Liao, I. S. Cho, O. Zandi, Y. S. Liu, K. Lashgari, G. Westin, J. H. Guo, F. J. Himpsel, E. A. Carter, X. L. Zheng, T. W. Hamann, B. E. Koel, S. S. Mao, L. Vayssieres, Energy Environ. Sci., 2014, 7, 3100-3121.
DOI URL |
[39] |
T. J. Smart, V. U. Baltazar, M. Chen, B. Yao, K. Mayford, F. Bridges, Y. Li, Y. Ping, Chem. Mater., 2021, 33, 4390-4398.
DOI URL |
[40] |
B. Scherrer, T. Li, A. Tsyganok, M. Döbeli, B. Gupta, K. D. Malviya, O. Kasian, N. Maman, B. Gault, D. A. Grave, A. Mehlman, I. Visoly-Fisher, D. Raabe, A. Rothschild, Chem. Mater., 2020, 32, 1031-1040.
DOI URL |
[41] |
A. Annamalai, R. Sandström, E. Gracia-Espino, N. Boulanger, J. F. Boily, I. Mühlbacher, A. Shchukarev, T. Wågberg, ACS Appl. Mater. Interfaces, 2018, 10, 16467-16473.
DOI URL |
[42] |
A. E. Nogueira, M. R. Santos Soares, J. B. Souza Junior, C. A. Ospina Ramirez, F. L. Souza, E. R. Leite, J. Mater. Chem. A, 2019, 7, 16992-16998.
DOI |
[43] |
S. C. Warren, K. Voïtchovsky, H. Dotan, C. M. Leroy, M. Cornuz, F. Stellacci, C. Hébert, A. Rothschild, M. Grätzel, Nat. Mater., 2013, 12, 842-849.
DOI PMID |
[44] |
S. M. Thalluri, L. Bai, C. Lv, Z. Huang, X. Hu, L. Liu, Adv. Sci., 2020, 7, 1902102.
DOI URL |
[45] |
O. Zandi, T. W. Hamann, Phys. Chem. Chem. Phys., 2015, 17, 22485-22503.
DOI PMID |
[46] |
M. R. Nellist, J. Qiu, F. A. L. Laskowski, F. M. Toma, S. W. Boettcher, ACS Energy Lett., 2018, 3, 2286-2291.
DOI URL |
[47] | R. Li, C. Li, Adv. Catal., 2017, 60, 1-57. |
[48] |
J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res., 2013, 46, 1900-1909.
DOI URL |
[49] |
C. G. Morales-Guio, M. T. Mayer, A. Yella, S. D. Tilley, M. Grätzel, X. Hu, J. Am. Chem. Soc., 2015, 137, 9927-9936.
DOI PMID |
[50] |
A. Tsyganok, P. Ghigna, A. Minguzzi, A. Naldoni, V. Murzin, W. Caliebe, A. Rothschild, D. S. Ellis, Langmuir, 2020, 36, 11564-11572.
DOI URL |
[51] |
Q. Xu, H. Jiang, X. Duan, Z. Jiang, Y. Hu, S. W. Boettcher, W. Zhang, S. Guo, C. Li, Nano Lett., 2021, 21, 492-499.
DOI URL |
[52] |
A. Subramanian, E. Gracia-Espino, A. Annamalai, H. H. Lee, S. Y. Lee, S. H. Choi, J. S. Jang, Appl. Surf. Sci., 2018, 427, 1203-1212.
DOI URL |
[53] |
S. Shen, P. Guo, D. A. Wheeler, J. Jiang, S. A. Lindley, C. X. Kronawitter, J. Z. Zhang, L. Guo, S. S. Mao, Nanoscale, 2013, 5, 9867-9874.
DOI URL |
[54] |
I. K. Jeong, M. A. Mahadik, J. B. Hwang, W. S. Chae, S. H. Choi, J. S. Jang, J. Colloid Interface Sci., 2021, 581, 751-763.
DOI URL |
[55] |
C. Li, Z. Luo, T. Wang, J. Gong, Adv. Mater., 2018, 30, 1707502.
DOI URL |
[56] |
C. Li, A. Li, Z. Luo, J. Zhang, X. Chang, Z. Huang, T. Wang, J. Gong, Angew. Chem. Int. Ed., 2017, 56, 4150-4155.
DOI URL |
[57] |
A. Tsyganok, D. Klotz, K. D. Malviya, A. Rothschild, D. A. Grave, ACS Catal., 2018, 8, 2754-2759.
DOI URL |
[58] |
S. Mourdikoudis, R. M. Pallares, N. T. K. Thanh, Nanoscale, 2018, 10, 12871-12934.
DOI PMID |
[59] |
Y. Wei, J. Su, L. J. Guo, L. Vayssieres, Sol. Energy Mater. Sol. Cells, 2019, 201, 110083.
DOI URL |
[60] |
X. Guan, F. A. Chowdhury, Y. Wang, N. Pant, S. Vanka, M. L. Trudeau, L. J. Guo, L. Vayssieres, Z. Mi, ACS Energy Lett., 2018, 3, 2230-2231.
DOI URL |
[61] |
I. Rodriguez-Gutierrez, J. B. Souza Junior, E. R. Leite, L. Vayssieres, F. L. Souza, Appl. Phys. Lett., 2021, 119, 071602.
DOI URL |
[62] |
C.-L. Dong, L. Vayssieres, Chem. Eur. J., 2018, 24, 18356-18373.
DOI URL |
[63] |
K. T. Arul, H.-W. Chang, H.-W. Shiu, C.-L. Dong, W.-F. Pong, J. Phys. D: Appl. Phys., 2021, 54, 343001.
DOI URL |
[64] |
J. B. Souza Jr, F. L. Souza, L. Vayssieres, O. K. Varghese, Appl. Phys. Lett., 2021, 119, 200501.
DOI URL |
[65] |
H. Masood, C. Y. Toe, W. Y. Teoh, V. Sethu, R. Amal, ACS Catal., 2019, 9, 11774-11787.
DOI URL |
[1] | 高学庆, 刘肖梦, 杨树姣, 张伟, 林海平, 曹睿. 黑磷夹层氧化钴纳米片构筑电催化水氧化的仿生通道[J]. 催化学报, 2022, 43(4): 1123-1130. |
[2] | 高敦峰, 李合肥, 魏鹏飞, 王毅, 汪国雄, 包信和. 能源催化材料的电化学合成[J]. 催化学报, 2022, 43(4): 1001-1016. |
[3] | 谷雨, 王晓蕾, Muhammad Humayun, 李林峰, 孙华传, 许雪飞, 薛新英, Aziz Habibi-Yangjeh, Kristiaan Temst, 王春栋. (Co,Ni)Se2/C@FeOOH中空笼状纳米结构的自旋调控加速水氧化催化研究[J]. 催化学报, 2022, 43(3): 839-850. |
[4] | 王彩琴, Danil Bukhvalov, M. Cynthia Goh, 杜玉扣, 杨小飞. 分级结构AgAu纳米合金用于高效电催化乙醇氧化[J]. 催化学报, 2022, 43(3): 851-861. |
[5] | 周志明, 陈金金, 王擎龙, 蒋兴星, 申燕. 硫化钴装饰BiVO4光阳极提升其光电化学水分解性能[J]. 催化学报, 2022, 43(2): 433-441. |
[6] | 曾辉炎, 曾衍铨, 漆俊, 顾龙, 洪恩纳, 司锐, 杨纯臻. 析氧反应中催化剂-电解质界面的质子动力学研究[J]. 催化学报, 2022, 43(1): 139-147. |
[7] | Shunichi Fukuzumi, Yong-Min Lee, Wonwoo Nam. 过氧化氢生产与利用的新进展[J]. 催化学报, 2021, 42(8): 1241-1252. |
[8] | RajenderBoddula, 谢关才, 郭北斗, 宫建茹. 过渡金属电催化剂在硅基光阳极分解水产氧中的作用[J]. 催化学报, 2021, 42(8): 1387-1394. |
[9] | 张学鹏, 王红艳, 郑浩铨, 张伟, 曹睿. 分子催化剂催化水氧化过程及其O-O成键机理[J]. 催化学报, 2021, 42(8): 1253-1268. |
[10] | 李佳原, 朱勇, 李斐, 刘国权, 许素显, 孙立成. 修饰吡啶衍生物的染料敏化光阳极水氧化性能的研究[J]. 催化学报, 2021, 42(8): 1352-1359. |
[11] | 陈齐发, 杜昊易, 章名田. 缓冲溶液阴离子对三价铜催化剂催化水氧化过程的影响[J]. 催化学报, 2021, 42(8): 1338-1344. |
[12] | 黄远, 王建军, 邹杨, 蒋立文, 刘晓龙, 江文杰, 刘宏, 胡劲松. 选择性硒掺杂提高NiFe2O4/NiOOH异质结电催化析氧性能[J]. 催化学报, 2021, 42(8): 1395-1403. |
[13] | 周定华, 范科. 提高氧化铁光电催化分解水效率的策略进展[J]. 催化学报, 2021, 42(6): 904-919. |
[14] | Jafar Hussain Shah, Anum Shahid Malik, Ahmed Mahmoud Idris, Saadia Rasheed, 韩洪宪, 李灿. Mn掺杂的铁电半导体BiFeO3本征光催化氧化水活性的研究[J]. 催化学报, 2021, 42(6): 945-952. |
[15] | 李银银, 武倩楠, 步琦璟, 张凯, 林艳红, 王德军, 邹晓新, 谢腾峰. 高效的CdS/Ti-Fe2O3异质结光阳极: 研究Z型电荷迁移机制增强光电化学水氧化活性[J]. 催化学报, 2021, 42(5): 762-771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||