催化学报 ›› 2022, Vol. 43 ›› Issue (2): 433-441.DOI: 10.1016/S1872-2067(21)63845-7

• 论文 • 上一篇    下一篇

硫化钴装饰BiVO4光阳极提升其光电化学水分解性能

周志明a, 陈金金a,b, 王擎龙a, 蒋兴星a, 申燕a,*()   

  1. a华中科技大学武汉光电国家实验室, 湖北武汉 430074
    b华中科技大学洁净与可再生能源中国-欧盟研究所, 湖北武汉 430074
  • 收稿日期:2021-03-26 接受日期:2021-03-26 出版日期:2022-02-18 发布日期:2021-05-24
  • 通讯作者: 申燕
  • 基金资助:
    国家重点研究发展计划(2018YFB1502900);国家自然科学基金(21975088);国家自然科学基金重大国际项目(51961165106)

Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode

Zhiming Zhoua, Jinjin Chena,b, Qinlong Wanga, Xingxing Jianga, Yan Shena,*()   

  1. aWuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
    bChina-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Received:2021-03-26 Accepted:2021-03-26 Online:2022-02-18 Published:2021-05-24
  • Contact: Yan Shen
  • Supported by:
    This work was supported by the National Key Research and Development Program of China(2018YFB1502900);the National Natural Science Foundation of China(21975088);the National Natural Science Foundation of China Major International (Regional) Joint Research Project(51961165106)

摘要:

太阳能驱动的光电化学(PEC)水分解可以有效地将太阳能转化为化学能, 作为解决环境排放和能源危机最具前景的途径之一, 已经引起了科学界的广泛关注. PEC水分解系统由两个半反应组成: 在光阳极上的析氧反应(OER)和光阴极上的析氢反应(HER). PEC系统的太阳能转化效率主要由光阳极/电解质界面的OER过程所决定, 这是一个非常复杂且涉及质子偶联的多步四电子转移过程. 钒酸铋(BiVO4)是应用于PEC水分解的典型且具有实际应用前景的光阳极材料之一. 然而, 由于不良的表面电荷转移、电荷在光阳极/电解质结面处的表面复合以及缓慢的OER动力学等因素, 导致BiVO4的PEC性能受到严重限制.
本文开发了一种新颖有效的解决方案, 以低成本、高电导率和具有快速电荷转移能力的硫化钴装饰来提升BiVO4光阳极的PEC活性, X射线多晶衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等表征, 研究结果表明CoS成功装饰于BiVO4表面. 采用紫外-可见吸收光谱(UV-Vis DRS)研究了BiVO4和复合光阳极CoS/BiVO4的光学性质, 结果表明, 与纯的BiVO4相比, CoS/BiVO4光阳极在可见光范围内光吸收能力有所增强.
将制备的BiVO4和CoS/BiVO4光阳极应用于PEC分解水实验中, 结果表明, 相对于1.23 V可逆氢电极, 在光照下, CoS/BiVO4光阳极的光电流密度显著提升, 可高达3.2 mA cm -2, 是纯BiVO4的2.5倍以上. 与纯BiVO4相比, CoS/BiVO4光阳极的起始氧化电位显示出负向偏移0.2 V, 表明析氧过电势得到有效减小. 入射光子转换效率(IPCE)测试结果表明, CoS/BiVO4光阳极的入射光子转换效率在500 nm之前的可见光范围内得到明显提升, 其中, CoS/BiVO4的IPCE值在380 nm处达到最大. 此外, 由于CoS的装饰作用, CoS/BiVO4光阳极的电荷注入效率和电荷分离效率均得到较大的提升, 分别达到75.8% (相较于纯BiVO4光阳极的36.7%)和79.8%(相较于纯BiVO4光阳极的66.8%). 电化学阻抗谱(EIS)测试结果表明, 通过CoS的装饰, CoS/BiVO4光阳极的界面电荷转移电阻得到有效降低, 证明其界面电荷转移动力学得到有效提升. 光致发光光谱测试结果表明, CoS的装饰显著提高了BiVO4的光生电子-空穴对的分离效率, 进一步证明BiVO4表面的CoS装饰在其PEC分解水中起着非常积极的作用. 本文为通过表面修饰设计应用于PEC水分解的有效的光阳极提供了新思路.

关键词: 光电化学水分解, 钒酸铋, 硫化钴, 电荷分离和传输, 光阳极

Abstract:

Solar-driven water splitting is considered as a promising method to mitigate the energy crisis and various environmental issues. Bismuth vanadate (BiVO4) is photoanode material with tremendous potential for photoelectrochemical (PEC) water splitting. However, its PEC performance is severely hindered owing to poor surface charge transfer, surface recombination at the photoanode/electrolyte junction, and sluggish oxygen evolution reaction (OER) kinetics. In this regard, a novel solution was developed in this study to address these issues by decorating the surface of BiVO4 with cobalt sulfide, whose attractive features such as low cost, high conductivity, and rapid charge-transfer ability assisted in improving the PEC activity of the BiVO4 photoanode. The fabricated photoanode exhibited a significantly enhanced photocurrent density of 3.2 mA cm -2 under illumination at 1.23 V vs. a reversible hydrogen electrode, which is more than 2.5 times greater than that of pristine BiVO4. Moreover, the CoS/BiVO4 photoanode also exhibited considerable improvements in the charge injection yield (75.8% vs. 36.7% for the bare BiVO4 film) and charge separation efficiency (79.8% vs. 66.8% for the pristine BiVO4 film). These dramatic enhancements were primarily ascribed to rapid charge-transport kinetics and efficient reduction of the anodic overpotential for oxygen evolution enabled by the surface modification of BiVO4 by CoS. This study provides valuable suggestions for designing efficient photocatalysts via surface modification to improve the PEC performance.

Key words: Photoelectrochemical water splitting, Bismuth vanadate, Cobalt sulfide, Charge separation and transfer, Photoanode