催化学报 ›› 2021, Vol. 42 ›› Issue (8): 1352-1359.DOI: 10.1016/S1872-2067(20)63683-X

• 论文 • 上一篇    下一篇

修饰吡啶衍生物的染料敏化光阳极水氧化性能的研究

李佳原a, 朱勇a, 李斐a,*(), 刘国权a, 许素显a, 孙立成a,b,c   

  1. a大连理工大学精细化工国家重点实验室, 大连理工大学-瑞典皇家工学院分子器件联合中心, 辽宁 大连 116024, 中国
    b瑞典皇家工学院化学系, 斯德哥尔摩, 瑞典
    c西湖大学理学院, 人工光合作用与太阳能燃料中心, 浙江 杭州 310024, 中国
  • 收稿日期:2020-04-23 接受日期:2020-06-01 出版日期:2021-08-18 发布日期:2020-12-10
  • 通讯作者: 李斐
  • 作者简介:*. 电话: (0411)84986247; 传真: (0411)84986245; 电子信箱: lifei@dlut.edu.cn
    第一联系人:

    共同第一作者

  • 基金资助:
    国家自然科学基金(21872016);辽宁省兴辽英才计划(XLYC1807125);瑞典能源部.

Dye-sensitized photoanode decorated with pyridine additives for efficient solar water oxidation

Jiayuan Lia, Yong Zhua, Fei Lia,*(), Guoquan Liua, Suxian Xua, Licheng Suna,b,c   

  1. aState Key Laboratory of Fine Chemicals, DUT-KTH Joint Education and Research Center on Molecular Devices, Dalian University of Technology (DUT), Dalian 116024, Liaoning, China
    bDepartment of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm 10044, Sweden
    cCenter of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, Hangzhou 310024, Zhejiang, China
  • Received:2020-04-23 Accepted:2020-06-01 Online:2021-08-18 Published:2020-12-10
  • Contact: Fei Li
  • About author:*. Tel: +86-411-84986247; Fax: +86-411-84986245; E-mail: lifei@dlut.edu.cn
    First author contact:

    These authors contributed equally to this work

  • Supported by:
    This work was supported by the National Natural Science Foundation of China(21872016);Liaoning Revitalization Talents Program(XLYC1807125);the Swedish Energy Agency.

摘要:

染料敏化光电化学电池(DSPECs)是构建人工光合作用体系的潜在方式, 其优势在于可通过优化染料结构来拓展可见光吸收范围, 从根本上提高太阳能利用效率.染料敏化光阳极在受激发产生电荷分离之后, 激发电子注入TiO2半导体导带, 由于其导带位置比传统的可见光半导体, 如BiVO4和Fe3O4等相比较负, 因此理论上可以在较小的偏压下取得较大的光电转换效率, 也更有利于和光阴极相耦合实现无偏压分解水.电荷传输动力学研究表明, 注入到TiO2导带的电子向氧化态光敏剂和催化剂的回传是造成体系能量损失的主要原因, 集中体现在光电流密度和效率的降低.目前, 已经报道了多种手段来减少DSPECs光阳极表面的电子回传, 包括使用带有长烷基链的锚定基团对水氧化催化剂进行修饰, 在半导体表面引入电子中介体以及使用核-壳结构的基底等.其中, SnO2/TiO2基底被广泛应用在染料敏化光阳极中, 这种基底可以提高光生电子的注入效率, 同时两种金属氧化物之间的异质结有效抑制了电子回传, 从而提高了DSPECs的光电活性.然而, 核-壳结构基底需要使用原子层沉积技术来制备, 所以操作相对复杂.本文基于Ru-bda(bda = 2,2'-联吡啶-6,6'-二羧酸)结构的分子水氧化催化剂和带有磷酸修饰基团的三联吡啶钌通过共吸附的方式制备染料敏化光阳极, 在不使用核-壳结构基底的情况下, 利用吡啶衍生物对TiO2电极表面的修饰来减少电子回传.
本文利用一系列吡啶衍生物作修饰负载在TiO2光阳极上(TiO2|RuP, 1; RuP = Ru(4,4'-(PO3H2)2-2,2'-联吡啶)(2,2'-联吡啶)2; 1 = Ru(bda)(L)2, bda = 2,2'-联吡啶-6,6'-二羧酸, L = (10-吡啶-4-基氧基)癸基)膦酸.在100 mW/cm 2的白光照射下(λ > 400 nm), TiO2|RuP, 1, P1 (P1 = 4-羟基吡啶)光阳极在0.4 V (vs. NHE)的外加偏压下获得了1 mA/cm 2的光电流密度, 其光电流比未修饰吡啶的光阳极增加了42%.同时, 其入射光子-电流转化效率在470 nm波长的单色光光照下达到最大, 为13.6%.经过吡啶衍生物所修饰的光阳极光电性能和文献中利用核-壳结构基底所制备的类似光阳极性能相当, 且光电流密度随吡啶对位取代基供电性能的增强而增大.瞬态吸收光谱和电化学阻抗谱测试表明, 吡啶吸附在光阳极上能有效地抑制界面上的电子回传, 延长电荷分离寿命, 是光电流增加的根本原因, 这也表明有机小分子修饰是提高染料敏化光阳极性能的简单、有效的策略.

关键词: 染料敏化光电化学电池, 水分解, 光阳极, 表面修饰, 吡啶衍生物

Abstract:

Splitting water into hydrogen and oxygen by dye-sensitized photoelectrochemical cell (DSPEC) is a promising approach to solar fuels production. In this study, a series of pyridine derivatives as surface additives were modified on a molecular chromophore and water oxidation catalyst co-loaded TiO2 photoanode, TiO2|RuP, 1 (RuP = Ru(4,4′-(PO3H2)2-2,2′-bipyridine)(2,2′-bipyridine)2, 1 = Ru(bda)(L)2, (bda = 2,2′-bipyridine-6,6′-dicarboxylate, L = 10-(pyridin-4-yloxy)decyl)phosphonic acid). The addition of pyridine additives was found to result in up to 42% increase in photocurrent. Under simulated sun-light irradiation, TiO2|RuP, 1, P1 (P1 = 4-Hydroxypyridine) produced a photocurrent density of 1 mA/cm 2 at a bias of 0.4 V vs. NHE in acetate buffer. Moreover, the observed photocurrents are correlated with the electron-donating ability of the substituent groups on pyridine ring. Transient absorption measurements and electrochemical impedance spectroscopy revealed that surface-bound pyridine can effectively retard the back-electron transfer from the TiO2 conduction band to the oxidized dye, which is a major process responsible for energy loss in DSPECs.

Key words: Dye-sensitized, photoelectrochemical cell, Water splitting, Photoanode, Surface modification, Pyridine derivatives