催化学报 ›› 2023, Vol. 55: 191-199.DOI: 10.1016/S1872-2067(23)64560-7

• 论文 • 上一篇    下一篇

利用磁场加速析氧反应

李晓宁a,b, 郝崇琰a, 杜雨蒙a, 卢昀c, 范亚蒙a, 王明月a, 王娜娜a, 孟瑞晋b, 王晓临a, 徐梽川b,*(), 程振翔a,*()   

  1. a卧龙岗大学创新校区, 澳大利亚创新材料研究所, 超导与电子材料研究所, 澳大利亚
    b南洋理工大学材料科学与工程学院, 新加坡
    c中国科学技术大学工程科学学院, 中国科学院材料力学性能与设计重点实验室, 安徽合肥230026, 中国
  • 收稿日期:2023-09-22 接受日期:2023-11-06 出版日期:2023-12-18 发布日期:2023-12-07
  • 通讯作者: *电子信箱: cheng@uow.edu.au (程振翔), xuzc@ntu.edu.sg (徐梽川).
  • 基金资助:
    国家自然科学基金(52102238);澳大利亚研究委员会(DP190100150)

Harnessing magnetic fields to accelerate oxygen evolution reaction

Xiaoning Lia,b, Chongyan Haoa, Yumeng Dua, Yun Luc, Yameng Fana, Mingyue Wanga, Nana Wanga, Ruijin Mengb, Xiaolin Wanga, Zhichuan J. Xub,*(), Zhenxiang Chenga,*()   

  1. aInstitute for Superconducting and Electronic Materials (ISEM), Australia Institute for Innovative Materials, Innovation Campus, University of Wollongong, North Wollongong 2500, NSW, Australia
    bSchool of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
    cCAS Key Laboratory of Mechanical Behavior and Design of Materials, School of Engineering Science, University of Science and Technology of China, Hefei 230026, Anhui, China
  • Received:2023-09-22 Accepted:2023-11-06 Online:2023-12-18 Published:2023-12-07
  • Contact: *E-mail: cheng@uow.edu.au (Z. Cheng), xuzc@ntu.edu.sg (Z. Xu).
  • Supported by:
    National Natural Science Foundation of China(52102238);Australia Research Council(DP190100150)

摘要:

无需额外的能源消耗, 利用永磁体有望克服电解水的瓶颈问题. 尽管近年来研究者在该方向付出了很多努力, 但磁场效应的潜在机制仍然不明确. 本文通过浸涂超亲水性γ-Fe2O3层, 使其沉积在不同的电极基底上, 并改变它们的表面润湿性和磁性, 从而成功地揭示了磁场效应的作用机制. 结果表明, 在高电流密度下, 磁场主要由额外施加在氧气气泡上的洛伦兹力和开尔文力产生, 前者决定外加磁场的几何构型, 后者则与电极的磁性密切相关. 同时, 本文还提出了通过优化磁场效应从而提高水电解整体效率的策略.

关键词: 水分解, 磁场, 气体释放, 洛伦兹力, 开尔文力

Abstract:

The challenge of overcoming the bottleneck in water electrolysis can potentially be addressed by utilizing permanent magnets without extra energy consumption, but the underlying mechanism of magnetic field effects is still puzzling despite increasing efforts in last few years. In this work, by dip-coating a superhydrophilic γ-Fe2O3 layer onto different electrode substrates, their surface wettability and magnetism are modified, so the ever-tangled effects of magnetic field are separated and identified. It is determined that the primary contribution of magnetic fields at the high current density was due to additional Lorentz force and Kelvin force exerted on oxygen gas bubble, with the former being dependent on the external magnetic field’s geometry and the latter closely tied to the electrodes’ magnetism. Strategies to maximize effects of magnetic field as well as the overall efficiency of water electrolysis is proposed.

Key words: Water splitting, Magnetic field, Gas release, Lorentz force, Kelvin force